Programming skills audit
Basic details
	Name
	     
	Course
	     

	Date of audit
	     
	Reviewed by
	     


Programming language experience
List the 5 programming languages that you have used most (most used first):
	
	Language
	Where learned
	Extent of experience

	1 (most used)
	     
	     
	     

	2
	     
	     
	     

	3
	     
	     
	     

	4
	     
	     
	     

	5 (least used)
	     
	     
	     


Specific programming concepts
Tick one box in each row to indicate how familiar you are with each programming concept:
	Concept
	Very
	Some
	Slight
	None

	assignment statements (typically = or :=) 
	 FORMCHECKBOX 

	 FORMCHECKBOX 

	 FORMCHECKBOX 

	 FORMCHECKBOX 


	output statements (e.g. print, write, printf, put) 
	 FORMCHECKBOX 

	 FORMCHECKBOX 

	 FORMCHECKBOX 

	 FORMCHECKBOX 


	input statements (e.g. read, scanf, get) 
	 FORMCHECKBOX 

	 FORMCHECKBOX 

	 FORMCHECKBOX 

	 FORMCHECKBOX 


	conditional statements (e.g. if-then, if-then-else, case, switch) 
	 FORMCHECKBOX 

	 FORMCHECKBOX 

	 FORMCHECKBOX 

	 FORMCHECKBOX 


	iterative statements (loops) (e.g. while, repeat, for) 
	 FORMCHECKBOX 

	 FORMCHECKBOX 

	 FORMCHECKBOX 

	 FORMCHECKBOX 


	subprograms (subroutines, procedures, functions; methods in an OO context) 
	 FORMCHECKBOX 

	 FORMCHECKBOX 

	 FORMCHECKBOX 

	 FORMCHECKBOX 


	parameters to subprograms 
	 FORMCHECKBOX 

	 FORMCHECKBOX 

	 FORMCHECKBOX 

	 FORMCHECKBOX 


	variables (and the distinction between local and global variables) 
	 FORMCHECKBOX 

	 FORMCHECKBOX 

	 FORMCHECKBOX 

	 FORMCHECKBOX 


	types (e.g. integer, float, character, string) 
	 FORMCHECKBOX 

	 FORMCHECKBOX 

	 FORMCHECKBOX 

	 FORMCHECKBOX 


	arrays 
	 FORMCHECKBOX 

	 FORMCHECKBOX 

	 FORMCHECKBOX 

	 FORMCHECKBOX 


	records (structs in C/C++) 
	 FORMCHECKBOX 

	 FORMCHECKBOX 

	 FORMCHECKBOX 

	 FORMCHECKBOX 


	pointers (or access types or reference types) 
	 FORMCHECKBOX 

	 FORMCHECKBOX 

	 FORMCHECKBOX 

	 FORMCHECKBOX 


	file handling (opening, closing, reading from and writing to files) 
	 FORMCHECKBOX 

	 FORMCHECKBOX 

	 FORMCHECKBOX 

	 FORMCHECKBOX 


	data structures (combinations of arrays, records and pointers to construct data representing complex entities) and which ones you would choose to use in given circumstances 
	 FORMCHECKBOX 

	 FORMCHECKBOX 

	 FORMCHECKBOX 

	 FORMCHECKBOX 


	object-oriented programming (classes, objects, methods) and the idea of structuring your program as a set of semi-independent and hopefully reusable components
	 FORMCHECKBOX 

	 FORMCHECKBOX 

	 FORMCHECKBOX 

	 FORMCHECKBOX 


	issues of program modularity (e.g. packages, separate compilation, separate header files, include files) and why you would choose to split your program up in a certain way
	 FORMCHECKBOX 

	 FORMCHECKBOX 

	 FORMCHECKBOX 

	 FORMCHECKBOX 


	issues of program readability (e.g. choose identifiers appropriately to help other people to read your program)
	 FORMCHECKBOX 

	 FORMCHECKBOX 

	 FORMCHECKBOX 

	 FORMCHECKBOX 


	exceptions (error reporting and propagation) 
	 FORMCHECKBOX 

	 FORMCHECKBOX 

	 FORMCHECKBOX 

	 FORMCHECKBOX 


	concurrency (or distributed systems programming) and the issues associated with more than one program (or part of a program) running at the same time
	 FORMCHECKBOX 

	 FORMCHECKBOX 

	 FORMCHECKBOX 

	 FORMCHECKBOX 


	web programming (producing web pages as a response to an HTTP request using, for example, JSP, PHP, ASP, CGI)
	 FORMCHECKBOX 

	 FORMCHECKBOX 

	 FORMCHECKBOX 

	 FORMCHECKBOX 


	breakpoint debugging
	 FORMCHECKBOX 

	 FORMCHECKBOX 

	 FORMCHECKBOX 

	 FORMCHECKBOX 


	editing programs
	 FORMCHECKBOX 

	 FORMCHECKBOX 

	 FORMCHECKBOX 

	 FORMCHECKBOX 


	compiling and/or interpreting programs
	 FORMCHECKBOX 

	 FORMCHECKBOX 

	 FORMCHECKBOX 

	 FORMCHECKBOX 


	using an integrated development environment (IDE)
	 FORMCHECKBOX 

	 FORMCHECKBOX 

	 FORMCHECKBOX 

	 FORMCHECKBOX 


	taking a written specification of what the customer wants and turning it into a program
	 FORMCHECKBOX 

	 FORMCHECKBOX 

	 FORMCHECKBOX 

	 FORMCHECKBOX 


	testing programs to see that they meet their specification
	 FORMCHECKBOX 

	 FORMCHECKBOX 

	 FORMCHECKBOX 

	 FORMCHECKBOX 


	taking an existing program written by someone else and modifying it to meet new requirements or to fix bugs
	 FORMCHECKBOX 

	 FORMCHECKBOX 

	 FORMCHECKBOX 

	 FORMCHECKBOX 



If you have done object-oriented (OO) programming (e.g. in Java or C++), and are familiar with concepts such objects, classes and object references (in Java, passing objects as parameters to methods) then you have probably covered the requirements for types, records and pointers above.

Practical test

As a practical test of whether or not you meet the prerequisite, attempt the following programming exercise using any programming language of your choice:

1. Write a function that returns as its results the reversed contents of an array of characters (or string) passed as its parameter.

2. Write a program that reads in a sequence of lines of text. As each line is read in, store each character in an array or string. Call the function to reverse the characters in the line, and then print out the modified array. Finally print out the number of lines and the total number of characters that were read in, in the format "1 line; 27 characters". The words "line" and "character" must be made plural (with an "s" on the end) if the number is anything other than 1.
Jim Briggs / 2nd October 2008
