

Contents

Table of Contents:

51.
Introduction

51.1
Background

51.2
The Problem

51.3
Aim and Objectives

61.4
Constraints

61.5
Report’s Structure

82.
Literature Review

82.1
MVC Architecture

102.2
JSP Models 1.5 and 2

112.3
Frameworks implementing the MVC pattern

122.4
Jakarta Apache Struts

122.4.1
Overview

132.4.2
Struts Components

182.4.3
Struts Workflow

212.5
Java Server Faces

242.6
Apache Struts vs. JavaServer Faces

262.7
The Java Persistence API

262.7.1
Overview

262.7.2
Introduction to JPA

272.7.3
Entities and JPA Annotations

292.7.4
The EntityManager object

302.7.5
EntityManager Types

302.7.6
Persistent Context Types

312.7.7
EntityManager’s Basic Operations

322.7.7.1
EntityManager’s - ‘persist()’ method

332.7.7.2
EntityManager’s - ‘find()’ method

332.7.7.3
EntityManager’s - ‘merge()’ method

342.7.7.4
EntityManager’s - ‘remove()’ method

352.7.8
Java Persistence Query Language

352.7.8.1
Basic JPQL Queries

362.7.8.2
Creating Queries

362.7.9
Summary

383.
Analysis and Design

383.1
The existing Project Milestones monitoring system

393.2
Requirements

393.2.1
Requirements Gathering Techniques

403.3
Requirements Analysis

403.3.1
Functional Requirements

433.3.2
Non-Functional Requirements

433.3.3
Usability

453.4
Analysis and Design Approach

463.5
Use Cases

483.6
Proposed Solution

493.7
Application’s Content Requirements

513.8
Site Architecture Diagram

533.9
Database Design

553.10
User Interface Design

553.10.1
Navigation System

563.10.2
Colour Scheme

563.11
JSP pages design and Workflow

563.11.1
The Login Page

573.11.2
The Unit-Coordinator Component

573.11.2.1
Adding/Editing/Deleting a milestone

613.11.2.2
Activating Milestones

623.11.2.3
Students’ Milestones Bulk Update

643.11.3
The Unit-Coordinator Component

673.11.4
The Students’ Component

673.12
Summary

694.
Implementation and Testing

694.1
Implementation Tools

694.1.1
Development Tool

694.1.2
Database Management System

704.2
Creating the Database

724.3
Building the New System

724.3.1
Implementation Approach

734.3.2
Building the Controller and Model

734.3.2.1
Creating the Entities

764.3.2.2
Uploading a File Attachment

784.3.2.3
Reporting Supervisees’ milestones.

804.3.3
Implementation Problems

844.4
Testing the Application

844.4.1
White-Box Testing

844.4.2
Black-Box Testing

844.4.3
Summary

865.
Evaluation and Conclusions

865.1
Requirements Evaluation

885.2
Project Management

885.2.1
The Initial Plan

895.2.2
The Rewrite

895.2.3
The Object-Oriented Analysis and Design Approach

895.2.4
The Lifecycle

905.2.5
The Major Underestimate

905.3
Sources of Information

905.4
Learning Process

915.5
Meeting the Objectives

935.6
Suggestions for Further Work

935.7
What would the Author do differently

945.8
Finally

96References:

99Appendix A - Project Specification

103Appendix B - Use Case Diagrams and Descriptions

113Appendix C - The Database Design

117Appendix D - Requirements Specification

119Appendix E - Initial Project Plan

120Appendix F - Final Project Plan

121Appendix G - Code Listing

[image: image1.emf]Acknowledgements First of all, I would like to thank my supervisor Dr. Jim Briggs senior lecturer in the University of Portsmouth for proposing me this idea and for all his support and advices, he provided me during the whole academic year 2007 . Next, I w ould like to say a big thank you to my family for providing me with courage throughout the duration of this project and last a special thanks to Google and Yahoo! Without them, I would not be able to write this report.

1. Introduction
1.1 Background
The University of Portsmouth’s School of Computing currently uses an online system called the Project Unit Management System (PUMS).

PUMS is a Project Management web system and its usage targets on the task of managing and providing data about the final year project unit. The general principles behind PUMS functionality are to provide reports/lists to people using it, to set up tasks and how long will take to complete, alert mechanisms, information on workload, statistics and user interaction.
More specifically, it allows undergraduate students to submit ideas for their final year project or to external parties the ability to submit a request for a project/software that their organisation needs or for a solution on an IT problem. In addition to being only a system for project ideas submission, PUMS has more features such as Project Allocation, which allows supervisor allocation to students and project monitoring a subsystem of PUMS which allow members of University’s staff to set milestones for students doing their final year project.
1.2 The Problem
While PUMS has been a reliable system and used for many years by the Computing department of the University of Portsmouth it does not cover needs that have been evolved during the time of usage of the system so it has been decided that the system needs to be implemented again and redesigned.
In addition, one of the major problems of PUMS is that it was implemented in a non Model View Controller style (discussed later). The non-MVC pattern makes the process of maintaining the existing code much harder than using an MVC pattern, because the presentation logic is mixed with the business logic.
The new system that is to be developed named SUMS logically divided in five sub-systems as the following: 1) Project Ideas, 2) Project Submission, 3) Project Allocation, 4) Project Monitoring 5) Student Feedback.

1.3 Aim and Objectives
The aim of this project was to design and implement the Project Monitoring Subsystem using the MVC design pattern and two open source frameworks, the Apache Struts and the Java Persistence API.

The new system will be used to monitor students' progress with their project.
Important functions of the new system were the following:

The ability of the project co-ordinator to set milestones for all students; supervisors and students able to set individual milestones; recording of progress reports and other file attachments; recording of milestones met/not-met (including in bulk); calculation of penalties associated with missed milestones. Features that need to be added include the ability of a user to edit or delete milestones and association of a milestone with file attachments.
Toward this aim, the author had to meet the following objectives:

1. To gain a better understanding of the Jakarta Apache Struts framework.

2. To learn the basics of Java Persistence API (JPA) that was never used before.

3. Find out about milestones in literature.

4. To find out information about the internal workings of the existing Project monitoring sub-system and find out how relevant people use this system.

5. Design a solution

6. Implement the solution using Apache Struts and JPA.
1.4 Constraints
However, during the process of meeting the above objectives, the author faced some major constraints:

1. The application was developed by only one person.
2. Time proved not enough for meeting all the requirements

3. The amount of information in literature regarding milestones was limited
4. The data, which can be displayed and amended in the new system, is considerably limited compared to the data of the existing systems database.

1.5 Report’s Structure
This report consists of five chapters:

	Chapter
	Title
	Description

	1
	Introduction
	Introduces the project, the outline environment, aims and objectives and constraints.

	2
	Review
	A literatrure review relating to the architecture, and frameworks used in the development of the solution

	3
	Analysis & Design
	Describes the requirements of the prototype and how they were gathered. Then the design approach used is discussed.

	4
	Implementation & Testing
	Describes how the prototype was implemented and tested.

	5
	Evaluation & Conclusion
	Evaluates the system built against the requirements and defines the objectives met.

2. Literature Review
This chapter introduces some of the technologies used in the development of the new milestones monitoring system. The Literature Review consists of three main sections. In the first section, the Model-View-Controller design patter together with the JSP implementation of this pattern is presented. The second section introduces two open source frameworks that implement the MVC pattern, the Apache Struts and the JavaServer Faces and compares them. Last, and Object-Relational Mapping framework, the Java Persistence API is defined. The JPA is the framework used for interacting with the Database.
It should be mentioned at this point, that the contents of this chapter are closely related to web programming in Java, using the Java Servlet technology. The reader should have a basic knowledge on this area in order to understand the technologies and techniques discussed. If the reader is not familiar with the Java Servlets a general introduction about JSP and Servlets, can be found at http://java.sun.com/j2ee/tutorial/1_3-fcs/doc/Servlets.html
2.1 MVC Architecture
As it has already been mention in the introduction, one of the requirements of this project was to re-develop the PUMS Monitoring subsystem using the Model-View-Controller (MVC) design pattern.

MVC was first widely defined in the book "Design Patterns" by Erich Gamma et al. It defines a separation of concerns in a program where the model defines the internal data structures of the program, the view defines how the model is rendered to the user, and the controller performs the actual actions in the program that affect the model. (Jcorporate, n.d)
In the web applications world, a possible interpretation of this definition would be that a web application could separate into three layers, the View, the Model and the Controller layers.
[image: image2.png]Model

(Java Beans, EJB Beans)
Access DB
business logic

Get Set

Change View

View
(HTML, 15P Pages)

Controller
(Serviet)

user interaction

model representation

User Actions

Figure 2.1 - The MVC architecture
The Model relates closely with the application’s data, which in case of a dynamic web application, is the data stored in a database or in any other type of storage. The model also has all the appropriate functions it needs to change its state. What it does not have relating to the data is the knowledge of how the data will be displayed by the View.

The View refers to the model in the sense that is the models representation to a user, which made a request. In a web application, it is the View (an HTML/JSP /ASP page) that will present the data using the appropriate functions/methods of the model and decide how these data is going to be displayed in a user’s browser.
The job of the Controller is to decode any user interactions on the View into actions to be performed by the model. In a web application, a View can interact with the Controller by sending HTTP requests (mostly using the GET or POST methods) to the Controller through the application’s container. The Controller receives the requests and if is needed, it changes the state of the model and then responses with an appropriate View.

The MVC pattern can offer a number of advantages to the development of an application. In a well-designed system, where the functional requirements do not tend to change often, the Controller and the Model will not be needed to change frequently comparing to the View (new pages may be added, or existing layouts may change). By using the MVC pattern, any modification to the View can be done without affecting the other two layers. Additionally the model can be modified or be tested without affecting the View neither the Controller.
In contrast, if the View is mixed with business logic then any change to the View may need modification to the business logic as well. This is very likely to introduce additional effort as any testing to the View means also testing to the business logic tighten with that View.
Another advantage of the MVC pattern is the separation of concerns when developing an application. A rich View is certain that it will need people with high skills in web designing while complex business logic will need programmers with high skills in programming. It is unlikely that a web designer will have high skills in programming in order to implement the business logic. It will also be very hard for a conventional programmer to implement the business logic in a web page, as an additional concern will be added that of mistakenly affect the layout.
MVC clearly separates the concern as the designer creates the View without worrying about any business logic and the programmer implements the business the Controller and the Model.
However, the MVC pattern tents to liabilities. In small applications, learning Struts and its features may take longer than developing the actual system, so a careful decision should be taken by a developer to use the Struts framework.
2.2 JSP Models 1.5 and 2
In the early JSP specifications before JSP 2.0 introduced, there were two approaches presented for building web applications, the JSP Model 1 and the JSP Model 2 Architectures. The main difference of these two Models can be located in the way that they handle the HTTP requests coming from the client. In Model 1, shown if figure 1.1, any request coming from the client is processed by the JSP that is intended to receive that request.

[image: image3.png]lasmoig

1

—_
Request

4

JSP page Data

—— store

Response

§ 1
Java bean 3 Business
— logic

Enterprise servers

Application server
or data sources

Figure 2.2 - JSP Model 1.5. (IBM07)
Specifically, in Model 1.5 when a browser sends a request to a JSP page (1), the JSP page processes the request accordingly and then communicates with a Java bean (2) ,which in turn may communicate with another bean that implements the business logic or the Java bean itself may be connected with the data source (3). When the actions requested from the user are processed, the outcome of this operation is returned to the client through the Java bean (4).

On the other hand, the JSP Model 2 (based on the MVC pattern) implements the concept of the Controller handling the request coming from the client instead of a Java bean. The notion of having a Controller handling the requests introduced with the new JSP 2.0 specification with the appearance of Servlets. A Servlet is a Java programming language class used to extend the capabilities of servers that host applications accessed via a request-response programming model (Sun, 2007a). Based on Servlets the JSP Model 2 works as shown in Figure 1.2 on the next page.

[image: image4.png]Jasmolig

(Controller)

Request
Servlet
4, 2
s %% (Model)
Java bean
frm— (View) B ——
JSP page 4

Application server

Data
store

|

Business
logic

Enterprise servers
or data sources

Figure 2.3 - JSP Model 2

In Model 2, the Servlet receives any HTTP request sent by the browser. The Servlet creates a new Java bean, which as in the Model 1 implements the business logic, and the Java bean accesses any data that are requested from the Servlet. When the data have been retrieved or the state of the model has been modified, the Servlet decides to which JSP page to forward the request received to and communicates with the chosen JSP.

Usually, the communication of a Servlet with a JSP on that stage is the Servlet storing in a place where the JSP has access data to be displayed by the JSP page. The stored data can be the Java Bean itself, a List of Java beans or some form of Java Collection (e.g. Array List, Hash Map, and Set). The data are retrieved by the JSP page during the rendering phase and is displayed to the browser. In Model 2, there is a clear separation of the presentation with the business logic and that is exactly what the MVC design architecture is all about.
2.3 Frameworks implementing the MVC pattern

In Java web applications the JSP Model 2, is based upon the MVC pattern.
Today there are a number of frameworks applying the MVC pattern, created in order to let developers focus more on implementing a web application rather than spending a large amount of time trying to design the application.

In Java, two of the most popular frameworks are the Java Server Faces (JSF07), Apache’s Jakarta Struts (STRUTS07). All of them provide a rich-set of features that considerably help developers building a web application in an MVC style.
They provide features such as custom tags, their own standard tag library form field validations, support for the EL Expression Language, Java Beans support, custom validations, and the most important of all, a clean separation of the three layers that the MVC pattern consists of.
Java Server Faces was initiated by Sun Microsystems, in 2001. Designed to ease the burden of developing and maintaining applications that run on Java application servers and render their UIs back to a target client, JSF leverages existing, standard UI and Web-tier concepts without limiting developers to a particular mark-up language, protocol, or client device. (OneInfoPlace, 2007)

Jakarta Apache Struts, was developed by in late nineties by a software architect named Craig McClanahan and then passed to the Apache Foundation in May 2000.
While these two frameworks have a common goal, and that is to help developers in building java web applications their architecture is completely different.

JSF follows a component-based approach rather than a page-based used by the Struts framework. The major difference between the two is in the behaviour of a web application responding to user actions.

A component based approach means users interactions are translated as events like in Java Applets. That is exactly what the JSF architects wanted to achieve. To give to developers the feeling that they work in a Swing based applet rather than web HTML forms.
In the next two Sections, the reader will have the chance to read and possibly learn the architectures of two of the most popular frameworks in the Java community. The first section will introduce the Jakarta Apache Struts (v.1.2.x) framework and the second section the Sun’s JavaServer Faces architecture.
2.4 Jakarta Apache Struts
This section introduces the popular in Java community, Jakarta Apache Struts framework. The contents of this section need to be carefully read as the components described were used in the implementation of the new Project Milestones monitoring system.
2.4.1 Overview

Apache Struts is a framework for developing Java web applications.
Struts is an idea implemented by Craig McClanahan a software architect who developed Struts as an open source project in the late nineties. Later in May 2000, McClanahan donated it in the Apache Foundation and there Struts placed under the umbrella of the Jakarta Project.
However due to its increased popularity in the open source community, the foundation decided to lunch it as a project of its own. Since the release of Struts 1.1 in June 2003, Struts has become one of the most popular frameworks for developing complex JSP applications. (Siggelkow, 2005, p.01). Struts gained this popularity, mainly because it allows to web programmers to apply the MVC architecture to their web applications.

Struts uses the concept of “ActionMapping” to enable a Servlet (ActionServlet, discussed later) to turn HTTP Requests into actions to be performed by the ‘Model’ of the application. An ActionMapping usually specifies a request path, the object type to act upon the request, and other properties as needed. (Varhol, 2002).
An “Action” object is the object used as the ‘Controller’ in the Struts framework and its responsibility is to receive any requests as already mentioned and decide to which available JSP page (‘View’) to send it or if it is needed, to perform any operations on the Model. The gap between the Controller layer and the presentation layer is filled with another object called “ActionForm”, which in a typical use of Struts, takes the data from the View and passes it to the Controller.

In the rest of this section, the individual components of Struts (version 1.2.x) will be introduced to the reader in detail along with a description of how all these components work together from the time a request is received until a response is sent to the client.
2.4.2 Struts Components
The components that this section introduces can be considered as the “heart” of the Struts framework. The components interact with each other to provide the Struts functionality in a web application that uses Struts.
a) The struts-config.xml

To make sure that all the layers of an application are connected to each other Struts uses an XML file named as struts-config.xml, which keeps all the configuration information about the Struts part of a web application.
This file is used by the Controller to map requests to specific objects has to call in order to fulfil a client’s request.
A sample of a struts-config.xml file, modified for the needs of this section is shown in the following figure:

<?xml version="1.0" encoding="ISO-8859-1" ?>

<!DOCTYPE struts-config PUBLIC

 "-//Apache Software Foundation//DTD Struts Configuration 1.0//EN"

 "http://jakarta.apache.org/struts/dtds/struts-config_1_0.dtd">

<struts-config>

<!-- ========== Form Bean Definitions ============ -->

<form-beans>
<form-bean name="deleteUserForm" type="test.struts.deleteUserForm " />
<form-bean name="LoginForm" type="org.apache.struts.action.DynaActionForm">

 <form-property name="username" type="java.lang.String"/>

 <form-property name="password" type="java.lang.String"/>

</form-bean>

</form-beans>
<!-- ========== Global Forward Definitions ========= -->

<global-forwards>
<forward name="logoff" path="/logoff.do"/>

</global-forwards>
<!-- ========== Action Mapping Definitions ======== -->

<action-mappings>

<action path="/login" type="test.struts.LoginAction" name= "login">

<forward name="valid" path="/jsp/MainMenu.jsp" />

<forward name="invalid" path="/jsp/LoginView.jsp" />

</action>

<action path="/login" type="test.struts.LoginAction" name= " deleteUserForm" />

</action-mappings>
<requestProcessor />

</struts-config>

Figure 2.4 - A sample struts-config.xml file (modified). (JavaRanch,2002)
As any valid XML file, at the top of the XML file is the XML version along with the encoding. In the second tag, the Document Type is defined another requirement that a valid XML need to meet.
The <form-beans> tag section specifies the ActionForms or FormBeans that is later bound to Actions (in the <action-mappings>). A FormBean element has no body and it is configured using only its two properties, name and type.
The Struts framework uses the ActionForms, which are typical JavaBeans, to transfer information from the View to the Controller. An ActionForm created to transfer data to a particular Action contains fields that map to the names of the HTML input elements within a ‘form’ tag that corresponds to a specific Action. In other words, an ActionForm represents the parameters submitted by an HTTP request. Usually there is one ActionForm for each JSP page of a web application. However, this is not obligatory.
In some cases, it might not be desirable to use an ActionForm but directly send the request parameters to the Action directly. Furthermore, in some other cases where the ‘form’ elements are not many (2 to 3) the Struts framework provides an alternative way to send values to an Action. In the <form-beans> section of the deployment descriptor, a developer can declare DynaActionForms.

DynaActionForms, can be used when an HTML form contains a few and simple properties where in that case defining a new ActionForm, which means creating a new class and set its getter/setter properties, may be time-consuming and frustrating.
Next, after the <form-beans> tag is the <global-forwards> element. Struts in divides forwards in two categories: Global and Local.
The global-forwards elements provide a way to have URIs called from many points in the application to be declared without redundancy (ref). For example, a Logoff link in a web sites page(s) could be written as

<html:link forward="logoff">Logoff</html:link>

Now any change to the URL of the forward with the name ‘logoff’, will not require every page that uses that link to change its code, thus making the application more maintainable. Forwards is a very useful concept in the Struts framework as they are the elements that separate the Controller from the View.

At the bottom of the struts-config.xml is the ActionMappings element, which combined with the Form beans are the most significant elements in the struts-config.xml file. The <action-mappings> element contains a list of all the <action> elements that define the ActionMappings of an application.
The <action> sub-element in this sample struts-config.xml has three attributes, path, type and name. The path attribute takes as a value, the relative path of the submitted request, the name attribute the name of the FormBean bound to this specific <action> sub-element and the type attribute the fully qualified name of the Action class that will process the requests coming for this action mapping.
The body of the <action> defines the local forwards which are specifically bound to their parent action.

B) The “ActionServlet” Class
The “org.apache.struts.action.ActionServlet” is the backbone of all Struts applications and together with the “org.apache.struts.action.Action” represents the Controller of the application. The ActionServlet is considered as the main component of the Controller layer as it is the first component that will receive an HTTP request from a browser and will decide which Action will process the request.

The ActionServlet is just a simple Java Servlet, which extends the abstract class “javax.servlet.http.HttpServlet” and implements three of its methods. The methods are the doGet(), the doPost() and init(). It is easy to understand what the purpose of these methods is. The first and the second method are called by the ‘service()’ function of the HttpServlet class in which the method (POST,GET) is identified and then the appropriate function is called (doGet()/doPost()).
public void doGet(HttpServletRequest request, HttpServletResponse response)

throws IOException, ServletException {

process(request, response);

}

public void doPost(HttpServletRequest request, HttpServletResponse response)

throws IOException, ServletException {

process(request, response);

}

As it can be noticed both of these methods call a single method named “process()”. In the process method is actually where the “Struts” process begins.
b) The “RequestProcessor” Class

The RequestProcessor is the main class where most of the processing for each HTTP request occurs. Some of the methods of this class are (Apache, 2007):

processPreprocess - Services Requests
processMapping - Selects Action

processRoles - Authorizes Action

processActionForm - Creates ActionForm

processPopulate - Populates ActionForm

processValidate - Validates ActionForm / Selects Input

processForward - Selects Forward

processInclude - Selects Include

processActionCreate - Creates an Action

processActionPerform - Executes an Action

c) The “Action” Class

The Action Class defines two methods (Apache, 2007):

public ActionForward execute(ActionMapping mapping,

 ActionForm form,

 ServletRequest request,

 ServletResponse response)

 throws Exception;

public ActionForward execute(ActionMapping mapping,

 ActionForm form,

 HttpServletRequest request,

 HttpServletResponse response)

 throws Exception;

The difference between the two is that the first execute is used in applications where the Servlet model is not used with the HTTP protocol but with some other protocol. For example, someone would want to use the Struts technology to build a service that uses Servlets but the communication protocol used in that service decided to be the SMTP instead of HTTP. Without the first method to provide that flexibility this would not be feasible.
The goal of an Action class is to process a request, via its execute method, and return an "ActionForward" object that identifies where control should be forwarded (e.g. a JSP, Tile definition, Velocity template, or another Action) to provide the appropriate response. (Apache, 2007)
d) The “ActionMapping” Object
At the bottom of the sample struts-config.xml file, as already described is the <action-mappings> element that contains <action> sub-elements. In Struts, an ActionMapping object represents a particular <action> sub element along with the properties defined in that action element. For example, in the case of the action mapping in the struts-config, an ActionMapping object would extend the the “org.apache.struts.action.ActionMapping” class, and include fields, getter and setter methods for the attributes path, type and name (In reality it will include more fields that are not included in the <action> element. See (Apache, 2007)).
The purpose of an ActionMapping is to describe an Action instance to the ActionServlet, and furthermore to be passed as a parameter to the execute method of the Action class. The ActionMapping is a significant component of every application that uses the Struts framework. First, it helps the RequestProcessor to decide to which Action to forward the request and secondly once the mapping has been passed to the Action, it helps the Action to define the workflow of the application by reading the local forwards nested in the <action> sub elements.
2.4.3 Struts Workflow

The workflow of Struts can be seen in the following diagram.

[image: image5.png]Event [Controlter | 21PN [gusiness Logic
HTTP Serviet Action
Request
Cle] Forward | stuts.configxml
Browser
Update View Get Model
HTTP s Treg- | Applcation State

Response

Figure 2.5 - Struts Lifecycle. Retrieved from http://www.ibm.com/ developerworks/library/j-struts/
When a user performs an action such as clicking an Update button in a JSP page or clicking a link, the browser constructs an HTTP request object and sends this object to the specified on the HTTP request object.
Supposed that the web application is deployed in a container such as TomCat, the container will get the HTTP request object, and will send it to the ActionServlet of the Struts framework.

The container will recognise which requests are considered to be sending to the ActionServlet by getting the mapping from a file called named web.xml. The web.xml file is where Servlets and other stuff are defined to the Servlet container. Typically, the web.xml contains a section that maps a URL pattern to a specific Servlet.

<servlet>

 <servlet-name>Action</servlet-name>

 <servlet-class>

 org.apache.struts.action.ActionServlet

</servlet-class>

<!-- Standard Action Servlet Mapping -->

 <servlet-mapping>

 <servlet-name>Action</servlet-name>

 <url-pattern>*.do</url-pattern>

 </servlet-mapping>

Therefore, when the container receives an HTTP request checks the request URI for patterns that may be included in the web.xml.

 The container, invokes the ActionServlet when a request contains the “.do” pattern. Note that the “*.do” pattern can be changed by the developer to another pattern if it is desired.

When the ActionServlet receives an HTTP request from the Container, it completes the following tasks:

1. One of the doPost() and doGet() receive the request and invoke the process() method (see 2.4.2, B)
2. In the process() method of the ActionServlet a new instance of the RequestProcessor class is created. On the new instance the init() method is called to associate the RequestProcessor with the ActionServlet and then the process() method of the RequestProcessor is called by passing it the HttpServletRequest and HttpServletResponse objects.
3. Inside the process() method the following methods will run in sequential order
3.1. processPath(): This method will parse the URI from the request in order to determine which ActionMapping should be used for this request. For example, the ActionMapping to be read from the sample struts-config.xml for a URI: login.do would be the first action with path= /login.do
3.2. processLocale(): Here the RequestProcessor will try to get the Local setting from the request.
3.3. processContent(): In this method Struts will set the content-type for the response (default: “text/html”, unless specified in the struts-config.xml)
3.4. processNoCache(): If configured in struts-config.xml, Struts will add to the response headers so that the page which will forwarded not to be cached by the browser.
3.5. processPreprocess(): This is a general purpose method which returns true. It has been implemented so that it can be overridden from programmers when an initialization is needed.
3.6. processActionMapping(): This method takes parameters the request and response objects and the value returned from the processPath(). As its name implies its use is to get an object of type ActionMapping. If the path was /logout a bean of type ActionMapping would be created with all the attributes and sub elements (forwards) specified in the struts-config.xml
3.7. processRoles (): This method takes as parameters the request ,the response and the bean return from the processActionMapping(). Its purpose is to check if any roles for the particular ActionMapping have been specified. If the user issued the request is not being allowed to view the action of the ActionMapping the process method exits.
3.8. processActionForm (), processPopulate(): If a “name” attributes is specified in the ActionMapping (in the <action> tag), the RequestProcessor will read the value, instantiate the FormBean mapped with this value and populate its properties with the parameter values of the request. Last, it will store the form bean in the session or in the request object.
3.9. processValidate(): Struts will perform validation if required to the values of the ActionForm instantiated. (calls validate() method in ActionForm)
3.10. processForward(): If there is a forward specified in the ActionMapping, forward control to that path.
3.11. processActionCreate(): In this method the value of the type attribute of the <action> element is obtained and a new instance of the obtained type is created.
3.12. processActionPerform(): This method calls the execute method of the Action class that maps to the request.
3.13. processForwardConfig(): Finally the process method of the RequestProcessor takes the object return form the previous method (an ActionForward object), looks the path that indicates and forwards the request and the response objects to that path (normally a JSP page). Then the JSP page is displayed to the browser of the user.
Apache Struts is nice and clean framework that helps developers to build applications in the MVC style. Rather than having information into Java code in JSP pages or beans, Struts provide the struts-config.xml file where all properties can be specified. This means that changes can be made without modifying and then recompiling code, but that changes can be made in a single XML file. In addition, although it seems that Struts helps the applications to build only their Controller part, Struts also provides a set of custom tags that can be used in the View and form field validation controls.
In addition, as Struts is a web framework that let developers to apply the MVC pattern to their application, all the benefits of the MVC design pattern is inherited to the application.
On the other hand, Struts may not be suitable for small size projects or projects near-term deadlines as the time of learning Struts may be greater than building a system without Struts. While this may not be considered a drawback, the truth is that careful planning must be done before someone decides to use Struts to build a web application.
2.5 Java Server Faces
Man(2005, p.202), defines six phases of a JSF application lifecycle as seen in the following screenshot:

[image: image6.png]~Component ree retrieved

“submitted form values stored in component
- component values converted

~ component values calculated

omponent values bound to backing bean
properties

Cévents handied
 methods invoked
“navigation calculated

£ component values
updated from
bean properties

[] =sysemieveiphases Legena

() =Avplcationevel phases

= Prosess events
YT RacesContextrenderResponse (advances to Render Response phase.
FacesConlox responseCompele) encs JSF Hecycie

Figure 2.6 - The JSF lifecycle. Retrieved from: (Developer07)

In the first phase, Restore View, the component tree of the JSP page requested by the user is retrieved and stored in the FacesContext equivalent to the ApplicationContext object of the Servlet API. In JSF, the component tree of a page is also referred as View.

When a request comes to the JSF Servlet named “FaceServlet”, the request is processed and the “viewID” of the page that the request was sent is extracted. The “viewID”, is the name of the JSP page sent the request (e.g /hello.jsp).

When the viewID is retrieved the FaceServlet, looks in the Session object, to see if the View of the page, already exists. If it does not exist, then a new View is created, else the existed is being used. Therefore, when a request comes and the View of the page does not exist, (page requested for the first time by a user) JSF creates a new one.

An example, of a View of a JSP page can be seen in the following image.

[image: image7.png]UlviewRoot

HimiForm

HumOuputText
componen
“weloameOupu”

HmiCommandButton
component
TodspayConmand

HimMessage
companentid “eors”

HimPaneiGrid
component
“eontopanst

HimOuput.abel
componenti: 10"

HimilmputText
companent s olllnput’

HimOutputText
component
Pololnplsber”

Figure 2.6 - A component tree of a sample “Hello.jsp” page. (Man, 2005, p. 62)

In figure 2.6, the UIViewRoot is the object that contains the view of the JSP page. The HtmlForm component, is the <h:form> tag that is converted to the html form tag when, the page is rendered. The HtmlInputText represents an input text field, the HtmlMessage, messages to be displayed to the user if any errors occur in the validation, the HtmlOutputLabel, defines a label, the HtmlOutputText represents a text to be displayed and the HtmlCommandButtons, as their name implies buttons of type “Submit”.

Note that in JSF, the controls of a View may be associated with event listeners, such as the following:

<h:commandButton id="redisplayCommand" type="submit" value="Redisplay"

 actionListener="#{helloBean.addControls}"/>

In this phase, except from initializing a View, JSF also associates the controls with properties of a Backing bean or in the case of buttons with the methods representing their event listeners. This means that JSF creates and maintains a list of controls and their corresponding Backing bean’s properties or listeners, which will be processed at a later stage. At this point, the first phase of the JSF lifecycle finishes. Next stage is the Apply Request Values.

In the Apply Request Values phase, JSF maps the values of the request parameters to the components in the component tree. The request is send to the Servlet with the POST method. The parameters of the body of the request contain the names of the components (the “id” specified by the user during design of page), and the values entered by the user. The FacesServlet, receives the values, and invokes a converter. A converter in JSF is a Java class that converts the parameters values of the request, to the types of their corresponding properties of the Backing Bean(s). If any parameter values cannot be converted, then JSF creates error messages, and stores them in the FacesContext in order to be displayed in the last phase of the lifecycle. If all the conversions were successful, the values are stored in the components and the lifecycle moves on to the next phase.

The next phase of the lifecycle is the Process Validations. In this phase, JSF traverses the component tree and checks if any validation tags are associated with the components. The following listing shows one of the validator tags that the JSF framework contains.
<h:inputText id="helloInput" value="#{helloBean.numControls}"

 required="true">

<f:validateLongRange minimum="1" maximum="500"/>

</h:inputText>
The “helloInput” input component is associated with the validateLongRange JSF tag. As its name implies this tag, checks if the value entered by the user is between “1” and “500”. If the validation returns false, meaning the value entered by the user is not less than “1”, or greater than “500”, then an error message will be created and stored in the FacesContext. Next, JSF skips the next two phases, and advances to the last phase of the lifecycle, the Render Response phase, in order to display the error messages to the user. Note that in the Render Response phase any errors from the previous step, the Apply Request Values, will also be shown to the user. If there are no errors, the processing advances to the Update Model Values phase.

In the Update Model Values phase, JSF updates the values of the Backing bean(s) or any other JavaBeans associated with the components in the tree.

Remember, that in the Apply Request Values, the values entered by the user were just copied to the components in the View and not in the properties of the Backing Bean, which is what JSF performs in the Update Model phase. JSF looks at the associations (mappings) defined in the Restore View phase, between the components of the View and the properties of the Backing beans and stores the copies the value of the components to the actual properties they are mapped. All the values stored can be considered safe, as validations have been performed in the previous phase. When JSF finishes with the values, proceeds to the next phase, which is the Invoke application.

After values have been converted, validated and copied from the component tree to the JavaBeans properties, now the application’s business logic can be executed, meaning that in this stage the event handlers are invoked by JSF.

In the event handlers (Java methods) an application can access or change the State of the Model of the application, but also this is the phase where the navigation decisions will be taken. In JSF navigation rules, are configured in the faces-config.xml.

The next and last stage in the JSF processing lifecycle is the Render Response stage. In this phase, JSF will send a response to the user that made the request. Also the state of the component tree will be saved in the Session of the user so that if the same page is requested again in the same session, the tree can be restored (Restore View).
2.6 Apache Struts vs. JavaServer Faces
In JSF, view components such as buttons or list boxes, can be associated with a specific event which is fired when their status changes.

Struts do not work this way. Clicking a button within an HTML form results on the browser to populate the values from all the controls and send a request object to a Servlet.

To make this clearer, consider the following case, where a JSP page adds two numbers and displays the result to the user. The JSP page, contains two text input fields and a button with the value “Add Numbers”. The user should enter values in the text fields and click the “Add” button.

In Struts when the “Add” button is clicked, an ActionForm will be populated with the values of the field and will be sent to the corresponding Action class. Then in the Action, the values will be retrieved and will be added. The result will be stored in the request object or in the session, and the JSP page will be invoked. The browser will need to render the page and create the text fields and the button again.

However, JSF works differently. To implement this functionality in JSF the developer would have to create only a JavaBean with getter/setter methods and a method to add the values entered by the user. Then he/she would have to declare this JavaBean in an XML file named “faces-config.xml”, the equivalent of the struts-config.xml in Struts.
Therefore, it seems that a developer in Struts will need to do more things in order to implement this small application. In Struts, one will need first to create an ActionForm, then an Action Class, and amend the struts-config.xml.

However, a developer might claim that there is no need to create an ActionForm to store the values of the input fields in the JSP page, but use a DynaActionForm (see section 2.5.2). In this case, the number of tasks will be the same but it is very likely that JSF will respond faster, as the component tree will be stored in session and there will be no need for recreation of the JSP page’s components.
Declaring a JavaBean to faces-config.xml, in JSF means that when the JSP page is rendered the JavaBean would be stored in the session scope of the application. Therefore, when the user opens the page, the JavaBean would be in the session scope already. By entering the two values and clicking the “Add” button, the Javabean’s properties would be initialized with the values, and then the method that adds the two values would be executed (assuming the button was associated with an event listener).
Therefore it can be said, that JSF would perform faster, the task of adding the two values, because if the application runs for a second time, there would be no need for any kind of initialisation. The component tree of the JSP page would be in the session, the “Add” button would be associated with the “addNumbers” method in the FacesContext, so the only thing that will change is the values of the two components in the Component tree.

In Struts, the whole process described above needs to be restarted again, meaning that the ActionForm and the Action need to be initialised again and when the response is sent to the user, the browser needs to reconstruct the JSP page.
In JSF when the response is sent to the page the controls of the JSP page will not be recreated. During rendering, the browser will just create the page from a hidden text in the page. The component tree is sent to the server and sent back to the browser as a hidden data from which the original GUI is recreated.
Generally, Struts and JSF are different frameworks following a different philosophy on developing web applications. Struts tights to the MVC design pattern more then JSF and to the traditional page-level technology. JSF follows the event-driven approach where components of a JSP page can be associated with event listeners.

The author believes that both frameworks help lot developers to build their web applications and that are equally important and useful. Craig McClanahan, who is also a leader architect on the JSF framework, in his personal blog (MCCBlog) states that the JSF framework was not created in order to replace Struts but to help developers using Struts to create the View layer more easily as the tags defined by Struts are considered inferior than the ones of JSF. Also encourages developers to migrate towards JSF components instead of using Struts tags.
However, many programmers believe that JSF will replace Struts in the near future, even if today Struts is considerably more popular than JSF. One of the reasons they believe that is because JSF is governed by JSR and will be part of the J2EE spec and thus will become the standard.
A comparison between the features of Struts and JSF from the OneInfoPlace (OneInfoPlace, 2007) website can be found in the Appendices.

2.7 The Java Persistence API
2.7.1 Overview
This section will introduce the Java Persistence API framework. JPA used by the author in the implementation of the new milestones monitoring system as the framework to interact with the database. Interacting with a database can be perfomed in two ways in a web application, by using raw SQL statements using Façade classes, or use an ORM framework like Hibernate, TopLink and JPA.

In this application JPA, was used, as it was a requirement specified by the client of this project. In addition, the rest of the existing subsystems of SUMS, are being implemented in JPA, so it would not be good to use another framework, as there would probably be inconsistencies when integrating the implemented system, with the rest of SUMS.
2.7.2 Introduction to JPA

The Java Persistence API, part of the Java Enterprise Edition 5 (Java EE 5) Enterprise Java Beans (EJB) 3.0 specification, is an Object Relational Mapping (ORM) framework that acts as an intermediate component between a Java application and its database. In a nutshell, object relational/mapping is the automated (and transparent) persistence of objects in a Java application to the tables in a relational database, using metadata that describes the mapping between the objects and the database. (Bauer, King 2007)

ORM frameworks like Hibernate(Hibernate, 2007) and TopLink (TopLink, 2007) were created in order to make the interaction between the application and the database easier. Before any ORM frameworks come to the application development scene, there was only a way for an application to interact with the database, and that was the JDBC (Java Database Connectivity) API. Though in small to medium applications the use of JDBC may be sufficient to cover the need of an application to communicate and interact with the database, in large applications JBDC is insufficient.

JDBC works with tabular row and column data rather than with Java objects so that a considerable amount of work has to be spent to convert data back and forth. (Heider,Gorler & Reisbich, 2006, p. 03) The conversion of data to Java objects is not something that can be avoided as Java objects belong on an object-oriented environment while tabular data to a relational environment and here is exactly where an ORM framework is used, to act as mediators between the two environments.
Additionally, JPA introduced an object query language named JPQL (Java Persistence Query Language) where unlike traditional SQL queries that use names of database Tables or columns, JPQL queries are object oriented, meaning that entities of the application Model are queried rather than any database tables.
Any web application that uses the Java Persistence API relies on the use of the “EntityManager”. In a web application, the EntityManager is the interface between the application and the relational database of the application.

This next section, introduces the EntityManager object with some common methods of it used in the development of the PUMS Monitoring sub-system.
2.7.3 Entities and JPA Annotations

In the ORM world Java, objects that map to a table in a database can also be called Entities. An entity is a simple Plain Old Java Object (POJO), which does not have to implement any interface or extend any particular class.

The only job of an Entity is to represent exactly the database table and its columns so that it can be used in the application as objects.

However, to distinguish an Entity from other regular Java Objects that do not map to a database table special meta-data has to be used. These meta-data are called Annotations. An annotation is a simple, expressive means of decorating Java source code with metadata that is compiled into the corresponding Java class files for interpretation at runtime by a JPA persistence provider to manage JPA behaviour. (Oracle, 2006)

Annotations are defined during the design time of an Entity to map database table names with the name of the class, the columns of the Tables into properties of the Entity but also to define more characteristics of a table such as its primary key, data types of columns and relationships with the other tables in the database.

For example to declare a Java class as an Entity that can be used by JPA, the @Entity annotation is used.
@Entity

public class Milestones implements serializable{

…..

}

However, this is not enough for JPA to be able to convert a row from the Milestones Table into an Entity. Therefore, more annotations will be needed in the Milestones class.
The next important annotation is the @Table annotation, which specifies the name of the Table that the Milestones class maps to.

@Entity

@Table(name = "milestones")

public class Milestones implements serializable{

………….

}

Now that the Table name has been specified, the columns of the table need to be mapped into the properties of the class. The @Column annotation serves that purpose.

@Entity

@Table(name = "milestones")

public class Milestones implements serializable{

@Id

@Column(name=MILESTONE_ID, nullable = false)

private Integer milestone_id;

………….

}

In the @Column annotation not only the name of the column can be specified but
also attributes such as the default value of the column, its uniqueness(Boolean) ,length and more.

In the example above, the field milestone_id has also been declared as the Primary Key of the class by using the @Id annotation.

For Entities that have relationships with other entities, JPA provide the following annotations:

@OneToOne - for 1-1 relationships

@ManyToOne - for N-1 relationsips

@OneToMany - for 1-N relationships

@ManyToMany - for N-M relationsips
2.7.4 The EntityManager object

The basic concept that lies behind the EntityManager is the Persistence Context.

In the Java Persistence API (JPA), a persistent context is a set of managed instances (Java objects) that are under the control of a particular instance of an EntityManager. In an application that uses JPA, the EntityManager manages only entities in the persistent context. This means that any change in the state of a managed entity is detected, and the EM, will reflect those changes to the database.

To make this clearer, it would be better to introduce the states of an object in an application that uses JPA.

a) Transient State.
The EM does not manage objects in the transient state. An object is in the transient state immediately after it has been created with the new operator. For example, the following line of Java code generates a transient object.

SomeType a = new SomeClass();

Object ‘a’ is transient mean that there is no corresponding row for that object in the database and its lifespan ends until no other object holds a reference to ‘a’.

In addition, objects referenced by other transient instances are considered transient as well.

b) Persistent State

Objects in the persistence state, have a representation in the Database (a row in a table) and the EM is managing them. Copies of persistent objects are contained in the persistent context of the EM. A transient object programmatically can transit to the persistent state using the following ways:
1) By holding a reference to another persistent object.

Object a = someClass.returnPersistentInstance();

2) By calling a particular method of the persistence API.

 Object a = EntityManager.persist(a);

3) By executing an SQL statement that retrieves a row from the Database and maps its values to the properties of an object.

 Object a = EntityManager.createNativeQuery(“select a from Table A”).getSingleResult();

The difference between a persistent instance and an instance in the transient state is that any changes in the first will be synchronized with the database when the unit of work completes where in the latter the EM knows nothing about, not even its existence.
c) Detached State
JPA considers instances in detached state when the unit of work completes, or the EM has been closed. The application still holds a reference to the detached instance and modifications can be done to it. A detached instance can be made persistent again only by passing it as a parameter to one of the EM’s methods named merge().

EntityManager.merge(a)
2.7.5 EntityManager Types
In a J2EE environment, there are two types of EntityManager, the Container-managed EM, and the Application-Managed EM. As their names implies, the former, the container of a web application (e.g. TomCat), is responsible for opening and closing the EM, while in the latter the lifecycle of the EM depends is configured programmatically. Container managed EM, is commonly used in J2EE but it can be used in J2SE environments as well, but an application managed EM can be used only in J2SE environments.

2.7.6 Persistent Context Types
There are two different types of Persistent Context with each one having different lifecycles, depending on the type of EM and the Java development environment used (J2EE or J2SE). These types are the transaction-scoped persistent context and the extended persistent context.

J2EE

The transaction-scoped persistent context of a Container-Managed EM closely relates with a lifetime of a transaction (JTA transaction). EM creates an empty persistent context as soon as a transaction begins, and then clears the persistent context immediately when the transaction commits. EM is capable of using the same persistent context for many operations within the same transaction but always closes the persistent context when the transaction commits. If a new transaction begins then EM creates a new persistent context to manage the operations of the new transaction.
The lifetime of a transaction-scoped persistent context of an Application-Managed EM is tight to the EM’s lifespan. In this case the Persistence Context is created when the EM is created and closes when the EM’s close() method is called.
The extended persistence context in a Container-Managed EM can only be used with Stateful Session beans. A Session bean is an EJB Component, which is created from an EJB container, and its main purpose is to interact with a client.

Stateful session beans are components dedicated to one client and act as a server-side extension of that client (Monson-Haefel, 1999).
Stateful session beans are used to manage requests from a client but also to manage the client’s session, while stateless beans are transient. This means that stateless beans maintain no state between client’s requests. (See, Sun 2007b). In this case, the persistent context opens when the EntityManager is injected into a Java Bean or a conventional Servlet (or an Action if Struts used) and is kept open until it is closed by the Container when a particular method of a Session bean (remove()) completes.
For an Application Managed EM, Persistence Extended context means that a persistence context is created when the entity manager is retrieved (using EntityManagerFactory.createEntityManager (...)) and closed when the entity manager is closed. (Hibernate, 2007)
Entities that have been made persistent within a transaction remain persistent even if the transaction commits. An extended persistent context detaches the persistent entities only when the EM closes or when the persistent context clears (discussed later).
J2SE
Applications using the J2SE environment can make use of only the Application-Managed EM with a transaction-scoped persistence. The EntityManager is retrieved programmatically as in the Application-Managed EM in J2EE through the EntityManagerFactory object. When EM is retrieved a persistent context is created and remains opened until the EM’s close() method executes. JTA transactions are not available. Any transactions used are called Resource-Local transactions.
2.7.7 EntityManager’s Basic Operations
EM’s interface contains many methods that developers can use for different things such as persisting or detaching objects, retrieving instances from the database and many more. This section introduces four methods of the EM, which according to the author are the most significant, but they have also been used in the implementation of the Milestones system.
2.7.7.1 EntityManager’s - ‘persist()’ method
The persist() method as already shown in the above section (see 2.5.1, b) is the method which makes an instance persistent. When the method executes a copy of the object passed to the parameter of the method, is added to the persistent context and from that time and on EM will be responsible for the object.

In a transaction-scoped persistence context, a transaction is required around the persist() method in order to execute. If no transaction is available, an error will be thrown (“javax.persistence.TransactionRequiredException”). Using an application managed EM with a transaction-scoped persistent context, each of the four methods discussed in this section need to be nested inside an active transaction. A transaction is not required when an extended persistence context is used.
The object state is synchronized with the database when the commit() method of the transaction is executed. Listing 1.1, shows how the persist method within a transaction works.
Listing 1.1 - Making a transient instance persistence (Application-Managed EM)
EntityManager em = emf.CreateEntityManager();

em.getTransaction().begin();
Student newStudent = new Student(1);
em.persist(newStudent);
em.getTransaction().commit();

em.close();

In the first line an EntityManager object is created, through an EntityManagerFactory object and a new persistenct context is initialized and associated with the current EM. Then a transient instance of type Student is created within the scope of the transaction. If the transient object were created outside the scope of the transaction it would not mater. Then the persist() method of the EM is executed, and the newStudent object transits from the transient state to persistent state (a copy of it is stored in the context). This object now is under the control of the EM and any modification (even in this example there isn’t any) will be detected and synchronised with the database when the commit() statement executes.

EM detects modifications to a persistent object by comparing the values of the modified object with the snapshot of the object that exists in the persistent context. If changes are, detected EM synchronises the changes with the databases. It is important to mention here that if there is already a record in the database with the corresponding primary key (in our case 5) a ConstraintKeyViolation exception will be thrown.
2.7.7.2 EntityManager’s - ‘find()’ method
The find() method is used when the application needs to retrieve a single row from the database by using only the identifier value (Primary Key).
This method comes to replace any SQL queries like the following:
“select a from Table a where a_ID = someValue”

The find method’s signature takes as parameters an Object of type Class, and the primary key of the row that we want to retrieve from a table in the database.
Listing 1.2 - Making a transient instance persistence (Application-Managed EM)
EntityManager em = emf.CreateEntityManager();

em.getTransaction().begin();

Student student = em.find(Student.Class, new Long(5));

em.getTransaction().commit();

em.close();

When executed, it returns a managed entity, which can be modified in the current unit of work and then synchronized again with the database.

2.7.7.3 EntityManager’s - ‘merge()’ method
As it has already been mentioned section 2.5.1, a detached instance is an entity with a representation in the database and not managed by any EM. This is a common scenario in web applications, which use resource-local managers with transaction-scoped persistence. In this case a single object or a list of objects are retrieved within a scope of a transaction but because they are needed in other parts of the application, usually in the Controller component, they become detached as soon as they get outside the scope of the transaction(except from the case where the EM is not closed). Similar any objects retrieved outside of the scope of a transaction are immediately detached.

The merge method is the one, which re-attaches an object into an EM. In other words, the merge method makes detached instances persistent again.

This method involved two entities the detached and the persistent version of the detached object. The detached instance is the one that is passed to the as parameter to the method and on the other hand the persisted instance is the one returned after the method finishes its execution.

While merging the JPA performs the following operations.

1) It checks whether the detached instance has a corresponding entity in the EM’s current persistent context.

2) If it does not, a managed entity is retrieved from the database and stored in the persistent context.

3) Then JPA copies the state of the detached instance to the persistent context replacing the state of the managed object and flushes the context when the transaction’s commit runs.

4) On the other hand, if JPA does not find a representation in the database of the detached instance, it copies the detached instance to the context (re-attachment) and on the next flush, inserts a new row to the database.
Listing 1.3 - Making a detached instance persistent (Application-Managed EM)
EntityManager em = emf.CreateEntityManager();

em.getTransaction().begin();
Student student = em.persist(Student);

em.getTransaction().commit();

em.close();
2.7.7.4 EntityManager’s - ‘remove()’ method
The remove method as its name implies allows an entity’s representation in the database to be removed. As most of the methods discussed so far, remove needs to be within a transaction-scoped persistent context.
It should be mentioned that the remove method removes only instances in the persistent state, which should also be managed by the EM’s current transaction.

If the entity to be removed is detached or transient an exception will be thrown, so what needs to be done before an entity is passed to the remove method is to transit its stated to persistent state. A common way for this is, within a transaction to fetch the entity’s representation from the database using the find() method, and then pass the managed instance as a parameter to the remove method.

Listing 1.4 - Making a persistence instance transient(Application-Managed EM)

EntityManager em = emf.CreateEntityManager();

em.getTransaction().begin();
Student student = em.find(Student.Class, new Long(5));

em.remove(Student);

em.getTransaction().commit();

em.close();

2.7.8 Java Persistence Query Language
JPA provides a rich set of methods that can be used for data retrieval from a database system. One of these methods is the find() method which has been described in section 2.5.4.2, p 17, and is used for primary key retrieval.
However, there will be many occasions in the development process of the Business layer of an application where objects need to be retrieved from the database based on some criteria.

This section introduces the main feature of the JPA query language and the basic class named ‘Query’ that is used for object retrieval.

2.7.8.1 Basic JPQL Queries
Almost all of the basic queries in JPA implement the logic of querying the entities in the persistence domain of an application rather database tables.

This means that a typical select SQL statement such as the following

“select all from Milestones;”
In JPQL would be expressed as:

“select milestones from Milestones m;”

When JPA interprets this statement, it converts it to the SQL version as shown before and queries the relational database system. Aliases are also used as shown in the example, in order to distinguish columns with the same name when joins are used (shown below)

Restrictions can also be used in JPQL queries where all instances of a class (or in SQL jargon, all rows from a table) are not desired.

“select milestones m from Milestones

join UnitMilestones um

where m.milestoneId == um.milestoneId;”

For example, if is required to restrict the results to all Milestone objects with a given id (which is also the primary key column), the statement needs to change as in the following SQL query:

“select milestones from Milestones m where m.Id = ‘Active’;

However retrieving an object using this query is not recommended as the find() method does exactly the same job and no casting to the returned instances is required.

Restriction does not apply only to SELECT statements but also to INSERT and UPDATE.
2.7.8.2 Creating Queries
In JPQL, the major interface that can be used in the construction of queries is the javax.persistence.Query interface. The basic philosophy of this interface is that queries are built by using the Query object.

By using this object, three kinds of queries can be built:

1. Native SQL queries

2. Queries with binding parameters

3. Named Queries

Named Queries, are static queries defined during design time in a class definition using the @NamedQuery annotation. In this annotation, the query string is specified in JPQL syntax with the name of the query. A class definition supports multiple queries to be defined but they need to be placed inside a @NamedQueries annotation. It is important to mention, that Named queries are global which means that they can be accessed by any class of the Controller and the Model layers as long as the appropriate imports are inserted in that class.

Named Queries can also be dynamic, which means that bind variables can be used in inside the query string. This can be done, by using one of the methods of the interface of the Query class, names setParameters() method.

Once the parameters have been set, the query will be issued to the database, by calling one of the two available methods for this task. The methods are the getSingleResult() and the getResultList();
As their name implies the first is used when a single object from the database is expected and the latter when multiple objects are expected to be returned by the query.
The query is converted to an SQL query by a JPA class named SQLConverter and issued to the database.
The Query class supports another one method for creating queries which is the createNativeQuery() method. This method executes a native SQL query and returns a result set of the same type of the object that was passed as a parameter.
2.7.9 Summary
In this chapter, the reader had the chance to learn about the Model-View-Controller design pattern, how this pattern is can be applied in a web application by using the Jakarta Apache Struts framework. In addition, the JavaServer Faces was discussed and compared with Struts.
Struts follow a traditional page-level web development, tight to processing an HTTP request, and perform actions defined by the developer, while JSF follows an event-driven approach, where user gestures are interpreted by the framework as events.
The comparison showed that a small application is JSF can be developed faster than Struts. In terms of performance, JSF seem to be faster than Struts as there is no initialisation of Java Classes, when a user accesses a page for a second time within a session. In addition, within a session, in JSF the components of a JSP page do not need to be rendered by the browser if the users access the same page. However, Apache Struts, which happens to be more popular than JSF, was the framework used, in the implementation of the milestones monitoring system die to the fact that the other sub-systems of SUMS, are being implement with Struts.
Finishing with the frameworks that can be used for organising a web application in the MVC style, the Java Persistence API was discussed. JPA, is and Object Relational-Mapping framework used in the Model of an application. Its main purpose is to let developers concentrate more on the View and Controller, rather than spending time on writing complex raw SQL queries. JPA was used in the new system for the same reason that Struts was chosen. JPA is the main persistence framework used in the implementation of SUMS.
Having introduced the design pattern and the technologies used the reader cab proceed to the Design Chapter.
3. Analysis and Design
Having studied the two Frameworks, Java Persistence API and Apache Struts v.1.2.x, the time to examine the existing system (PUMS) and define the requirements for the new system to be developed came.
The review of the existing system took place during interviews arranged between the project developer and the supervisor of this project Dr. Jim Briggs that also happens to be the Administrator of PUMS, but also in meetings with Dr. Penny Hart, Project Coordinator of the Undergraduate projects.
In addition, both of them being users of the existing system defined the requirements of the system to be implemented.

This chapter introduces partially the existing system, defines the new requirements and a description of how the design of the system was implemented.
3.1 The existing Project Milestones monitoring system
The existing system was built using the Perl language and CGI technology.

Features of the existing system are:

1. Setting up milestones for all students in a chosen Cohort

2. Setting up individual milestones

3. Add missing milestones for those student who are missing some

4. Activate Existing Milestones

5. Associates milestones report for individual students

6. Recording of milestones met or not-met for individual students or for students of a chosen Cohort;

7. Sending Summary/Statistics to Supervisors about milestone achievement of their supervisees

8. Calculation of penalties associated with missed milestones.

9. Undo functionality

It defines four categories of users (or roles) that have privileges to access the system:

1. Administrator

2. Unit Coordinator

3. Supervisor

4. Superuser

5. Student

As in any system that defines roles in the users that will be accessing it, PUMS has also implemented this logic. Users (usually one) with the administrator role have access to every aspect of the system. Users that were given the role of Unit Coordinator have also the privileges to access any of the features defined.

Restrictions though apply to the Supervisor and Student roles.

Supervisors are allowed to only updating milestones that have been met or not by their supervisees while Students are able only to view a report of the milestones that met.
3.2 Requirements
One of the most significant tasks on designing a new system is gathering requirements for that system. Requirements gathering are important so that a developer after identifying all the requirements of a system can begin to design that system. Also developing a new system that would improve the functionalities of an existing system, a study of the existing system needed to be done first. Studying the existing system makes a developer to gain a clear understanding of how the existing system works which is also important, as functionalities of the existing system may need to be copied to the new system.
3.2.1 Requirements Gathering Techniques
According to Bennet, McRobb, & Farmer (1999, p. 99) there are four main requirements gathering techniques used by analysts to investigate requirements.
1. Background Reading
2. Interviewing
3. Observation
4. Questionnaires
The requirements gathering techniques used for this project was interviewing some of the users of the existing system and partial observation. The main purpose of the interviews was to gain an understanding of how the existing system works and identify the requirements of the new system to be developed.
Observation took place during interview sessions where the interviewees were asked to clarify some requirements gathered from an interview.
Background reading was not possible as there were no official reports or statistics of the existing system to study. In addition, the author chose to use no questionnaires because interviews and partial observation proved enough to document the requirements of the new system.
After analyzing the existing system and discussing it with the client, decided that the new system should keep some of the existing features but certainly new ones had to be added.
It was decided that the new system would have to provide the following functionalities as shown in section
3.3 Requirements Analysis
After the requirements were gathered, it was time to prioritise them. The author believes that, prioritisation of the requirements is one of the key steps in any software development project, as there is always a risk that the time may not proved enough to finish every feature before the deadline. Aurum & Wohlin (2002, p. 72), describe that requirements can be prioritised by considering many different aspects such as importance, penalty, cost, time and risk.
For this project, the developer decided that requirements that are most important to the system should be implemented first. Important requirements are considered to represent the backbone of the new sub-system and before implementing those, no other additional features could be added to the system.
In addition, important requirements are usually the ones with the most work to be done, and it was considered a good decision to do the hard work at the begging.
3.3.1 Functional Requirements
Functional Requirements, describe what a system does or is expected to do (Bennet et. al. , p.99). The new Project Milestones Monitoring system should provide the following functionalities.
1) Setting up milestones for each Cohort
One of the most significant requirements that already exist in PUMS and the new system had to have. The roles allowed to set up milestones for a Cohort remain the same. As in the current system, only Administrators and Unit Coordinators will be allowed to set up a milestone.
To set up a milestone a user should provide the following information:

1) Date in which the milestone becomes live, means for Supervisors that this milestone can be reported on the date specified and for Students that they should be able to view the state of this milestone on the date specified.

2) Date in which the milestone becomes inactive.

3) Units that this milestone applies to. Different Project Units usually have different milestones but there will be some cases where a particular milestone might fit for more than one Project Unit. For example, an introductory project lecture at the beginning of an academic year may apply to both Engineering and Study Projects. In this case, a milestone can be set to apply to both units, instead of creating two milestones with the same attributes but different units.

4) Milestone Description. This can be also be define as the name of the milestone (e.g. Attend Project Lecture A1/ First meeting with supervisor/Project specification agreed)

5) Lowest role to update the Milestone. Here is where roles allowed to interact with a milestone are set.
6) File Attachment (new). If a milestone is associated with an attachment, here is where the user specifies the type of the attachment (discussed later)

7) Maximum size of Attachment.

2) Edit Milestones

This is an important requirement that the new system should meet. The existing Project Milestones Monitoring system does not provide this functionality. If one wishes to update or delete an existing milestone he/she has to open the text file that Milestones are saved in and edit or delete the milestone by hand.

3) Associate File Attachment with particular milestones

The existing system does not enable users to upload a file attachment.

Some milestones, for example, Agree Report Structure, Agree Project Specification or Progress Report correlate with a file and it would be better if the Students could upload that file.

The system should enable Students by logging into their accounts to upload a file to the database. Furthermore, the new system should notify Supervisors when their supervisees upload a file and allow Supervisors to open the uploaded file and then respond to their supervisees.
A Supervisor’s response may either be to report the Milestone as “Completed” if he agrees with the contents of the file, or upload a new file with comments concerning the work of the student. In the latter case, students should be able to download the file sent by the supervisors.
The system should also prohibit Students uploading a file many times in order avoid filling the database unnecessary files and to avoid unnecessary traffic to the database. The rule decided is to allow Students to upload only three times a file and then restrict any uploading until their Supervisor replies. Once they downloaded the attachment sent by their Supervisor, again Students are allowed to upload a file only three times and so on. Notice that if a Supervisor reports a Milestone as “Completed” the system will not allow a student to upload a file for this milestone again. The same if a Milestone is overdue.
Additional requirements for the File Attachment are:
a) Date time at which student uploaded the report

b) Mark for the report
4) Bulk Update of Milestones for a selected Cohort

This functionality exists in the present system; however, it lacks a functionality, which makes it not very usable.
Currently, the Unit Coordinator selects the milestone from a list box and a report of students and their associated milestones status is displayed.

Listing 3.1 - Bulk Update Form
Selected Milestone: Agree Report Structure
	Nikolaos Fountas, 1924..
	Completed (Reported By Jim Briggs at

12:20 on 09/07/2007)

	FirstName Last Name, 123…
	Checkbox Ctrl

	……………….
	……………….

If a student’s Milestone has been reported as “Completed” then the corresponding information is displayed as shown in the first row of the table in Figure 1, 1. It says that Jim Briggs has reported the milestone Agree Report Structure for Student Nikolaos Fountas, at the shown date time.

The student in the second row does not have his milestone reported by his supervisor and in this case, a checkbox (selected).

The report may contain about one hundred students some of them having their milestone status set up by their supervisors or the Unit Coordinator and some of them Unreported. Now the problem lies in the case where the Unit Coordinator wants to update the state of lets say half of the students’ milestones. Around fifty “uncheck” clicks must be performed and that because there is no functionality like a Toggle button where the user could select all the student milestones or none. Therefore, the new system should provide a Toggle button where the user can select or deselect student milestones.
In addition, it was decided that a button that will hide the Completed records from the screen would be useful.
5) Supervisors should be able to update (individual or in bulk) Milestones of their supervisees.
Half of this functionality is implemented in the existing system. Supervisors can update milestones for each supervisee individual but not in bulk.
6) Supervisor should choose if a penalty should be applied or not.
Some milestones such as the “Agree project specification” milestones for the Undergraduate Projects are associated with a penalty mark if the student fails to meet those milestones. However, there might be occasions where the student has filled and Extenuating Circumstances Form (ECF) giving reason why he has failed to complete this milestone. In this case, the existing system does not enable users with permission to remove the penalty marks from a student milestone. In addition, reason must be given if a supervisor removes penalty marks.
3.3.2 Non-Functional Requirements
Non-functional requirements are those which describe aspects of the system that are concerned with how well it provides the functional requirements (Bennet et al., p. 99)
For the new system, the non-functional requirements are considered the speed of inserting, updating or retrieving data. The response speed can be considered as a significant requirement especially for the functional requirement number four. As stated from Dr. Penny Hart the Unit Coordinator for the Undergraduate Projects usually a typical bulk operation in the existing system involves more than one hundred records. Therefore, the new system should be built to response to user actions as soon as possible.
3.3.3 Usability
An important requirement that every application web or desktop should meet is to be usable. Usability is some general measure of a user’s experience when interacting with a web site. Usable web applications are usually those, which enable users to interact with the site quickly, easily and in a pleasant way
The system to be developed will have to follow some usability guidelines such as those defined by Nielsen (2000), by the Information Services & Technology department of the Massachusetts Institute of Technology, (MIT, n.d), or those specified by the Web Communications Division of the U.S. Department of Health and Human Services’ Office (UsabilityGov, 2007).
Usability guidelines provided by Nielson (2000) are more based upon his experience on evaluating web sites for usability, and the information he provides on his web site are not a complete reference to usability guidelines but an outline of usability guidelines he wrote on some of his books or in some of his report. For more information on the guidelines he introduces on his website, one needs to buy his books or reports.
The Information Services & Technology department of the MIT web site provides, a list of usability guidelines larger than of Nielsen’s, however the guidelines are written by students of the Institute and there is no evidence justifying why a particular guideline is useful to a web designer.
The Human Service’s Office usability guidelines, at the time writing this report, was the most complete and comprehensive source of guidelines, as they provided for downloading an entire guidelines book in “.pdf” format having more than 240 pages of instructions, guidelines and examples.
However, not all the guidelines described in the electronic book had to be followed as most of them are appropriate for typical websites that will go live on the Internet for commercial access. In contrast, most parts of the new subsystem will be accessible only by a particular target group in the University of Portsmouth
Target Group:

Typical users of the existing system and therefore of the new one to be developed, fall into two categories; the members of staff of the University of Portsmouth and students. The age of the members of staff is mostly between 40 and 60 years old, while most of the students (undergraduates) start from 20 year old. Of course, there are cases where users of the system would not fall into these groups.

Aim of the first category of users, is to set up milestones, and view reports while users of the second aim to view a report of the statuses of their individual milestones and upload files.

Generally, users of the system are experienced Internet users and they do not need to consume much time in order to complete their tasks. However the new system should be designed to ensure members of staff, would not consume lot of time to complete a task, as they might be busy or tired. It is believed that member of staff would use the system at the end of their day in work, when they will probably feeling exhausted.
Guidelines (UsabilityGov, 2007) for the new prototype according to target group’s characteristics:

a. Do not display Unsolicited Windows and Graphics.
It was decided not to use any pop-ups in the new system as this might distract the users or annoys them, as probably most of them would have the Block-pops feature of their browser enable. Nowadays, Internet Explorer 6 and Firefox, the most popular browsers used by the target group of the system, automatically block pop-ups.
b. Standardize Task Sequences
Lists of “items” (milestones, students etc.) will be common in the new system. Almost all the major components of the web pages would be represented as lists. The system should be designed to allow users to perform selection of multiple/individual items in the lists using checkboxes in consistency.
c. Design for Common Browsers
The system will have to be designed, developed and tested for Internet Explorer 5/6 and Firefox 1.x/2.x
d. Differentiate and Group Navigation Elements
A common navigational scheme needs to be developed for the prototype, which will be visible and make users to understand the structure of the web site. In addition, the web site will use different navigation schemes so that users can understand their meaning and destination. It was decided the main navigation scheme to constitute of drop down menus and display exit points from a page a links on the top of the page to improve their visibility to the user.

e. Highlight Critical Data
It was decided to highlight the Headings of the pages, as they provide feedback on Users’ Location.
f. Do Not Limit Viewable List Box Options
Wherever it is possible, list boxes, which show options as open-list, should have an adequate size (height) to reduce as possible the need for scrolling which is time-consuming.
g. Minimize the Number of Clicks or Pages

Completion of tasks should be done as fast as possible for the target group defined.
3.4 Analysis and Design Approach
Using Java, an object-oriented language for the implementation of the prototype, it looked logical that an object oriented analysis and design would be followed rather than a structured approach.

Also, Bennet et. al (1999, p.450) states that in general, structure oriented methodologies remain tied to methodologies such as the traditional Waterfall method, where moving to the next phase of the development process requires the previous phase to be perfectly completed.

Therefore, in a structured methodology moving from the requirements gathering phase can only happen when a developer is confident that all the requirements have been elicited. While this might produce a stable system, it is almost certain that during development iterations would certainly be needed to different phases and it was certain that the implementation of the new Project Milestones system would not be an exemption to that.

Object-oriented analysis and design (OOAD) is a software engineering approach that models a system as a group of interacting objects (Wikipedia, 2007). Usually in OOAD, interactions between objects are represented by notation languages such as the Unified Model Language.

The Unified Modelling Language (UML) is a language for specifying, visualizing, constructing, and documenting the artefacts of software systems, as well as for business modelling and other non-software systems (UML2Spec, 2007).

UML is a unified version of three of the most popular object-oriented modelling methods emerged in the early 90s. These were Booch’s method, which was suitable for Object Oriented Development, the OMT (Object Modelling Technique) most suitable to Object Oriented Analysis and Jacobson’s OOSE.

In 1996, all of them came to work for a company named Rational Software Corporation and combined their methodologies to come with the Unified Method. UML was adopted in 1997 as a standard by the OMG (Object Management Group, an industry standards body).

The latest version of UML (UML2Spec, 2007) introduces thirteen types of diagrams, which can be classified in three categories: Structure, Behaviour and Interaction.

For the new system, Class diagrams from the Structure category and Use Case diagrams was decided to created as they are generally considered the most important but also those two would significantly help in the implementation phase.

In addition to the UML diagrams, the author chose to create another two diagrams named Content Requirements Architecture and Site Architecture used mostly by web site architects on the design process. The former reflects the data that will be included on the web pages of the new system and the latter as its name implies the site’s Architecture.

Note that the UML diagrams presented in this Chapter was not implemented in one phase but they were enhanced through iterations during the design and the implementation phases.
3.5 Use Cases
Use case diagrams and use case descriptions are extremely useful UML outputs. They are easy to understand and the use case descriptions describe in plain English what the application will actually do.

Use case descriptions provide a description of the interaction between the users of the system, which in Use case diagrams are called Actors, and the high level functions with in the system, the Use cases. Formal definitions of the notation of a use case diagram are given below (Scott, 2006):

1. Use cases: A use case describes a sequence of actions that provide something of measurable value to an actor and is drawn as a horizontal ellipse.

2. Actors: An actor is a person, organization, or external system that plays a role in one or more interactions with your system. Actors are drawn as stick figures.

3. Associations: Associations between actors and use cases are indicated in use case diagrams by solid lines. An association exists whenever an actor is involved with an interaction described by a use case.

Use case diagrams and description can be shown to users of the system or to clients to check the requirements. Developers also can use them when they design the application to ensure that it does what it is expected.

The User case diagrams, which reflect the functional requirements of the new Project Milestones Monitoring system, are shown in Appendix B. A sample Use Case, replicated from the Appendices is shown below.
For Administrator and Unit Coordinator

1 Use Case #1

[image: image8.png]Logging On

System

View Main Page
Unit Coordinatgr

«extends»

ilestones Bulk

Administrator Update

Activate Milestones

	Use Cases Description:

	Login User

Everyone can view the login page, which is the start page of the application.

The Login page contains three Login sections: Unit Coordinator, Supervisor and Student sections. If login successful the Main Page is shown else return user to login page.

	View Main Page

A general page to welcome a user. It is the first page the application displays after a successful login.

This page will contain a top navigation bar with three drop down menus

The first menu selects the Cohort, the second selects Units and the third one, one of following pages: Milestones, Activate Milestones, Milestones Bulk Update

	Logoff

Clicking Log off on the Main Page will return the user to the home page

3.6 Proposed Solution
First of all the new Project Milestones Monitoring system had to be implemented using the Model View Controller (MVC)/JSP Model 2 design pattern.(see, Chapter 2, section 2.2). That was not chosen by the developer but it was a “de-facto” requirement as it is for any sub-system of the SUMS. However it seems to be the most suitable design pattern for this kind of system.
MVC separates the business logic from the View, which results in a maintainable web application. In addition, MVC seems to fit perfect in a medium to large system such as the one to be implemented and that because it was certain that the business layer of the application would be large. Without a clear separation between the layers, the task of debugging the application would be very time-consuming, something that was not desirable as the time to complete the artefact was a major constraint.

In addition, the new Project Milestones Monitoring system will represent a subsystem of SUMS and the whole system. For this reason, having built the subsystem in MVC style, individual components of the implementation can be integrated to the whole system independently. So any thought of not using the MVC pattern would be proved wrong later in the implementation phase.
Having finished with the requirements elicitation and analysis it was time to decide on solution.

First, it was decided that the new system should be divided in three components by considering the roles that will be using the system. Therefore, the system was divided into the:

3 Unit-Coordinator Component

4 Supervisors Component

5 Student Component
For the first component, four JSP pages will be used. However many of them will be re-used for similar tasks, For example, the tasks of adding and editing a milestone will be performed in the same JSP page. The appropriate contents of the page ot be displayed to the user will be chosen using JSTL tags. Therefore, for this component there will be one JSP page for adding/editing a milestone, one for displaying a list of milestones according to a selected Cohort from the navigation menu, one JSP page for updating in bulk student milestones and one for Activating Milestones. It is assumed that each component of a JSP page would send data to separate Struts Actions.

The second component will consist of two JSP pages. One for displaying a list with Active milestones and a list of supervisees and the other one will display information about the selected milestones or students from the previous page.

Same here, the appropriate components will be chosen by the browser according to the output of JSTL ‘IF’ tags and each component will map to separate Struts Action classes.

The third component, which is the simplest of all, will consist of one JSP page displaying a list of milestones associated with the student and a facility to enable that student to upload a file.

Re-using some JSP pages or components of the system to be developed is definitely needed. The View layer becomes more maintainable but also saves time in the development process. In addition, components can be re-used in other web applications if designed correctly.
The web application will interact with a single database schema, which will be provided by Dr. Jim Briggs. This schema represents the backbone of the whole SUMS system and for the new system needs new tables will be appended.

The database management system and the Integrated Development environment to be used should be free of charge as there was not budget for this project.
3.7 Application’s Content Requirements
Having finished with the database design, the next step was to decide upon the contents of the new Project Milestones Monitoring system, in other words what data the system should display to the user. For that purpose, Content Maps (or else mind maps) decided to be used.

A content map outlines briefly the content and features of a web site but also gives some indication of how these two might relate. Its main purpose is to indicate to the client a “prototype” of the contents of the application.

Figure 3.1, displays the content map of the application.
[image: image9.png]First Name

o B e (= supenices Q
\M ‘ // Activate Milestonss Miestobes Ny HEmIS
estones Undate

StartDate—7 Project Title
End Date

Unit Coordinator

stafes | Description

Supervise

Milestones Bulk
Update

Project Milestones Monitoring
(Login)

Milestones.

Update e

Upload File

Start Date
j End Date

Student Description
Milestones— i

Status

Upload File

Figure 3.1 - Content Map of the new sub-system.

The content map Figure 3.1 shows the main sections of the application to be built combined with the data to be included. The four circles constitute the main sections of the web site. It was decided to have as an entry point to the site a simple login page from which the user could login to any of the three sections (Unit Coordinator, Supervisor, and Student).

However, in reality the system should not follow that design, as for testing purposes it was designed as a whole application on its own. When the system would merge with the other subsystems of SUMS, then the starting point would be the Home Page of SUMS.
The Unit Coordinator section will be divided in three subsections, Activate Milestones, Milestones Bulk Update and Milestones. In the latter, a list of milestones will be displayed and the user would be able to update, edit, delete and view Milestones. Information about milestones would be the Start Date (Date milestone becomes live), End Date (date becomes overdue), a description of the milestone and its status (Active, not Active)
The next section would be the section where the Supervisors will be able to report milestones for their supervisees. In this section, a list of milestones would be displayed where the user can select a milestone, see a report of that milestone for all his /her supervisees, and update the report. In addition, there will be another section where Supervisors can select a Supervisee and see a report for all the milestones associated with that student and update as well.

The student section will display data to the Student regarding his associated milestones. In addition, a student in that section would be able to upload a file.

3.8 Site Architecture Diagram
Finishing with the Content map, the next task was to create a Site Architecture diagram that would reflect the system’s Architecture in terms of conceptual relationships such as interactions, dependencies or sequences. Rosenfield and Morville (2002, p. 272) define Site Architecture Diagrams as “…high-level Blueprints which are used to show the relationship between pages and other components, and can be used to portray organisation, navigation and labelling systems.”
[image: image10.png]Entry Point

Supervisor

Project Milestones
Monitoring
(Login)

Unit Coordinator (|

LEVEL 1 |
|
|
|

Student

LEVEL 1

: LEVEL 2

Supenvises(s) L1

Milestone(s)

LEVEL 3

Milestones

AddEdUView
Single Milestone

Activate Milestones

|
List of Milestones

t Activate or Defictivale

Delete Single
Milestone

Mielstones Bulk Update

Figure 3.2 - Site Architecture Diagram of the new Project Milestones Monitoring system.

[image: image11.png]Relationship
vetween Pages

Page

Group of similar
Components

Figure 3.3 - Site Architecture Diagram Keys.

From a Site Architecture diagram, one can deduce the path that a user will follow in order to complete a task. This information is helpful when the designer needs to calculate the number of levels that a user should visit in order to perform a task and additionally the number of clicks can be calculated by following a path.

As can be seen in Figure 3.2, the system will be divided in three main sections, the Supervisors section, the Unit Coordinator and Student section, which are represented as Pages in the Architecture diagram.

The Supervisor section constitutes of two Levels (1, 2). Level 1, includes the Supervisor Page with two components: a List of Milestones and a List of Supervisees. The former leads to a page in Level 2, where a list of supervisees will be displayed, while the latter leads to page (Level 2) where a list of Milestones is displayed. Users can update the status of selected Milestones and return to the page in Level 1. Same for the List of Supervisees component, users can update milestones that correspond to selected supervisees and return to the previous page.

In the Unit Coordinator case, a user in Level 1 can navigate to three pages to Level 2, Milestones, Activate Milestones and Milestones Bulk Update. The Milestones page can lead a user to Level 3 by selecting a milestone to View, Update. Not that deletion of a Milestone happens in Level 2.
The Activate Milestones page in Level 2 will have a list of Milestones where user would be able to activate or deactivate a milestone.
The bulk update of Milestones can occur in Level 2, where a page will show a list of student milestones to enable the Unit Coordinator to update whichever milestones needs.

Finally, the Student Page will show a list of milestones associated with the student and particular milestones will enable the user to upload a file if required.
The “3-Click-Rule” Rule
In the new system, it was decided that a user should click no more than three times where it was possible in order to reach his goal. This decision follows one of the well-known patterns in web design named as the “3-Click-Rule”. The principle [of the “3-Click-Rule”] is that it should take no more than 3 clicks to access any feature, content or each logical step in a process (UsabilityByDesign, 2004). It is believed that, if users can not find what they're looking for within three clicks, it is likely that they will get frustrated and leave the site.

However recent studies shown that the reason behind users getting frustrated and leaving the site is not the number of times they clicked to find information or complete a task but whether they finally managed to find information or not.
A team from the User Interface Engineering web site (www.uie.com) made a study (Porter, 2007) to see if the “3-Click-Rule” really correlates with the satisfaction of users. In their experiment, they set up 620 tasks where each task might needed more than three clicks to complete and at the end of each task, they asked users to rate how satisfied they were with the site for that task.
The results proved that there is no major correlation between user satisfaction and the “3-Click-Rule”. As can be seen in the following diagram

[image: image12.png]£(1

Percento
Unsatisfiec

Dissafisfaction by Task Length

00% "

90%
80%
70%
60%
50%
40%
30%
20%
10%

9 12 15 18 21 24
Number of Clicks

Diagram 3.4 - Adapted from (Porter, 2007)
The percentage of users not satisfied who clicked 3 to 6 times (55% - 60%) was almost equal to the percentage of users who clicked 12 times or more (around 50%). Thus, one can say that fewer clicks do not make users more satisfied.

Nevertheless, the “3-Click-Rule” decided to be used in the design of the subsystem, as it definitely results in fewer application levels and in a simple and effective navigation system, which definitely makes users satisfied.
3.9 Database Design
Having worked out a solution for the new system was decided that the database behind the application should be designed.
It should be noted that the final design of the database did not take place in one process but it was evolving during the implementation phase of this project. However, for clarity reasons it is presented here as it was implemented in one phase.

Because the system would integrate with the other five subsystems of SUMS, Dr. Jim Briggs provided a copy of the SUMS database, which is under development. Any new tables needed for the Project Monitoring subsystem would have to be added to the existing database, thus avoiding any extra work of creating a new database from the beginning.

To design the required tables the requirements analysis was being taken into account. It was decided that in order to fulfil the needs of the new subsystem five tables would need to be created.

1. milestones

2. mstudentmilestones

3. munitmilestones

4. fileAttachment

5. fileAttachmentTypes

Note that in this section, only the first table is presented, and discussed. For a detailed discussion of the rest of the tables of the database, see Appendix C.

The “milestones” Table

The “milestones” table needed to represent all the data for Milestones that would be set up by the Unit Coordinator (see Section 3, 2. “Setting up milestones for each Cohort”)

	Milestones
	Requirement

	MILESTONE_ID [PK]
	M

	START_DATE
	M

	END_DATE
	O

	STATUS
	O

	DESCRIPTION
	M

	DATE_ADDED
	O

	LAST_EDITED
	M

	PERSON_ID [FK] to person table
	M

	ROLE_ID [FK] to role table
	O

	ATTACHMENT_TYPE_ID [FK] to file_attachment_types table
	O

	

Relationships:

Column: PERSON_ID has a ‘many-to-one’ relationship with column PERSON_ID of the Person table.

Column: ROLE_ID has a ‘many-to-one’ relationship with column ROLE_ID of the Roles table.

Column: ATTACHMENT_TYPE_ID has a ‘one-to-one’ relationship with column ATTACHMENT_TYPE_ID of the File_Attachment_Types table.

3.10 User Interface Design
In this section the reader, will be able to view the some parts of the User Interface of the new milestones monitoring system and reads about the decisions taken during the design of the UI of the application.

3.10.1 Navigation System
The web pages of the application were developed following the usability guidelines, discussed in Chapter 2, section “Usability”.

The first thing the developer had to think of was the navigation system of the application. According to Cohen (2003, p. 114-119) there are many navigation systems used today on web sites, but the most common ones are Tabs, Left-Hand Panel, Page-Top Navigation Bar, Breadcrumbs and Pull-down Menus.

In many cases, some of the above are combined according to the content architecture of a web site.

The navigation type selected for the new system is a top navigation bar with two drop down menus. From the first drop down menu, a user can select one of the Cohorts in the list, and then select the desired action for that Cohort.

Tabs were not appropriate in this kind of application, as the new system does not have any related categories to show. Tabs are being used mainly by e-commerce sites, which are organised into similar categories such as product categories.

Tabs are supposed to be used for rapid switching between alternative views of the same information object. (Nielson, 1999)

A left hand panel might be an alternative navigation system but it was not chosen although implemented at the very beginning. Because as the text of the Cohort names inside the “Cohorts” drop down was getting longer the left hand panel was also getting large with result that more than 20% of a 17’ inch screen to be covered by the panel for some particular Cohorts. Breadcrumb trails also could have been used for navigation but usually are more suitable to web sites, which have many levels (more than two).

A screenshot of the navigation bar used is shown in the following screen.

[image: image13.png]Submit

Cohort: [Undergrad 2007-2008 v| Task [Miestones

Semester 2 entry 2007
Welcom st Patricks February 2007
Distance Leaming CIS/EIS 2007

n of SUMS,

3.10.2 Colour Scheme
The colour scheme used in the pages of the system constitutes of three main colours, white, yellow and grey. The background colour of the body is white and the text colour is mainly black although in some cases, such as in error messages display, the text colour used is red.

The colour was chosen by the developer based on some usability and accessibility issues such as for high readability colours with no high contrast had to be used and for colour blinds it would be best not to use any combination of red and green.
3.11 JSP pages design and Workflow
As it has already been mentioned, the new system is logically divided in three parts, Unit Coordinators, Supervisors and Students. In this section, the design of the major components that constitute the pages is discussed. To see the full pages see the Appendices.
3.11.1 The Login Page
The login page of the system, it was designed as simple as possible without following any usability guidelines, as it would not be used at all, in the new SUMS system. In the case of the Project Milestones monitoring system, it is being used for initialization of the session state variables needed for each component and for testing purposes. The following screenshot
[image: image14.png]Login for STAFF:

Username:

passviord:

|

— |

Updats Students
Milestones [Supervisors]

Username:

passviord:

Login for Students:

Username:

password:

|

The login components can be considered as the starting point for each of the three components.
3.11.2 The Unit-Coordinator Component
3.11.2.1 Adding/Editing/Deleting a milestone
Clicking the Login button on the first login-dialog, provided that the correct username and password has been entered in the text boxes and the user who wants to login has been give the appropriate role, the Main page of the Unit Coordinator component is displayed (Main.jsp).
[image: image15.png]Uit [PUE3D v |

Cohort: | Undergrad 2007-2008

Task:

Welcome to the Milestones section of SUMS.

Please use the top menu to navigate.
Miestones to be Activated Today: (1)

« Progress Report, 2007-09-01

Milestones

Activate Milestanes
Add Missing Milestones
Generate Mass Updating Form

In this page, the Unit Coordinator can select the Cohort that he/she is interested to perform a task, and the using the third drop down menu, can navigate to the rest of the component.

In addition, the subsystem notifies the Unit Coordinator if any milestones have to be activated on the date the page is opened. The author was decided to add this feature to save time from Unit Coordinators opening the Activate Milestones page and see if any milestones had to be activated in the date the page rendered. If there are not any milestones to be activate the user can click the Logout link to exit the system.

However, this feature is only useful if the only purpose of opening the main page is to activate milestones.
Clicking on the Milestones option of the Tasks drop down menu, the Milestones (Milestones.jsp) page is displayed. The main component of the Milestones page is a list that displays the Milestones for the selected Cohort. [image: image16.png]Add new Milestone to Cohort: Undergrad 2007-2008

Date Event Deadline for
Became completion Event Status
Acti of Event,

007-10-05 | Progress Report

Action

007-09-15 | Chapter Plan

Activated

The table has a light yellow background and black text to achieve maximum readability. On the top of the table user can see the Selected Cohort and click the “Add new Milestones” link to insert a new milestone to the database for the Cohort selected. Users can also click one of the buttons provided to perform the action specified by the labels.
The table was designed by the user having in mind one of the most important usability guidelines “Minimize the Number of Clicks or Pages”. So it was decided to let users directly choose the task they desire to complete with 1-Click, rather than letting to select an option of a drop down menu or click a radio buttons. In that case, it would require users to perform more than one click, as they would have then to click a button in order to send the request to the server. Of course, to remove the need of having a button, one might think that Javascript could be used to send the request to the server. However if a user has the Javascript disabled the page would be completely unusable.

Clicking the “Add new Milestone” link, the ‘AddMilestone,jsp’ page is displayed. In this page the user can fill the required fields and click the Save button.

[image: image17.png]Cohort: | Undergrad 20072008 v| Unt [PUE3 v Tesk: |

Cohort: Undergrad 2007-2008, Unit

Date Milestone becomes | Calendar

|

Date Milestone becomes overdue: Calendar
PJE30
. fod To: PISI0
Units Applied To: PIBOP
PJ4sP

Penalty, if Overdue:

ilstone Descripios [—

Lowrest Role Allowed to Update this: |Superuser |
le Attachment: Pragress Pieport v

Max Size of Attachment (KB):]
Submit | [Reset

This page was designed to allow users to enter values in the fields as quick as possible. Calendar controls are used, which allow users to select a date graphically and a “multiple selections” list box that allows users to select multiple units. If the user enters values that are not in the required format and clicks the Submit button, error messages will be displayed at the top of the page.
[image: image18.png]Cohort: | Undergrad 2007-2008

v| Unt [PJEI0 v

Task: [

Cohort: Undergrad 2007-2008

 The end date you selected '01/09/2007", is cartier than the start date '08/09/2007"
* Please select the units for which this milestone applies

Date Milestone becomes liv

Date Milestone becomes overdue:

Units Applied To:

et o P

08/09/2007 Calendar

01/09/2007 Calendar

PJE3D
PJS30
PJ6OP
PJ45P

——r——|

Otherwise, if the values were correct and the milestone was saved to the database the application returns to the Milestones page where a message is displayed to inform the user.

[image: image19.png]Cohort: | Undergrad 2007-2008 Unit. |PJEI0 v Task: | Milestones

 Milestone ‘dtend Project Lecture, has been succesily saved]

[image: image20.png]Add new Milestone to Cohott: Undergrad 2007-2008

Sate Event Deadline for
lecame completion Event Status
\ctive of Event,

2007-09-01 | 2007-10-05 | Progress Report

Action

2007-09-13 | 2007-09-15 | Chapter Plan

2007-09-02 | 2007-09-03 | Attend Project Lecture

Activated

Error messages in the whole application are displayed at the top of the page so that can be noticed easily by users.
Editing a milestone follows exactly the same flow as the Add milestones page is re-used for both tasks. For the “delete” task, the user can click the corresponding delete button. Doing that a Javascript alert box is displayed asking the user to confirm if he/she is sure deleting a milestone. Asking the user for confirmation is important as the delete button might be mistakenly clicked resulting in loss of data from the database.
3.11.2.2 Activating Milestones
By default, any milestone that is saved to the database is not in the Active state.

This means that neither Supervisors nor Students can view or interact with this milestone. To change the status of a milestone to Active a Unit Coordinator has to visit the Activate Milestones page via the top navigation menu. Clicking this option the ‘ActivateMilestones.jsp’ page is displayed

[image: image21.png]Activate or Deactivate Milestones for Cohort: Undergrud 2087-2008

Date Event .
ive completion of Event Units Applied

Became Active 07!

Deadline for
Date Event . .

completion of Event Units Applied
Became A comel
2007-03-01 007-10-05 | Progress Report PIEI0
2007-09-13 007-03-15 | Chapter Plan PIEI0
2007-09-02

007-09-03 Attend Project Lecture | PIESD

In this page, users can select one or more milestones to Activate. By selecting milestones and clicking the Activate milestones, the selected milestone(s) will be activated and if the database operation was successful a message will be displayed at the top of the page.

[image: image22.png]Milestone ‘Chapter Plan', for Units PJE30 'has been Activated!
Milestone Uttend Project Lecture’, for Units 'PJE30 ‘has been Activated!

Activate or Deactivate Milestones for Cohort: Undergrad 2087-2008

Deadline for

e A Event Units Applied

2007-09-01

JE30

Botame Attive Completionof Event Units Applied

2007-09-13 |2007-0-15 hapter Flan = u}
2007-09-02 | 2007-09-03 + attend Project Lecture | PIE30 [m]
[y Deadiine for

3.11.2.3 Students’ Milestones Bulk Update
One of the major requirements of the new system is to let Unit Coordinators or users with appropriate roles to update student milestones in bulk.

This can be done, by selecting the Generate Mass Updating Form option of the Tasks available in the drop down menu of the navigation. The page that will be displayed to the user is the “MilestonesBulkUpdate.jsp” page.

This page was designed so that users can select a Milestone from a drop down menu and the click a Display button in order to view a report of student milestones for the selected Milestone. The drop down menu contains only active milestones. Milestones that are not active do not have any student milestones associated, so it would be a bad design decision to display all the milestones in the listbox, as inactive milestones would not display any report.
Another approach could be to include all the milestones in the listbox and if an inactive is chosen display a message notifying the user that the milestone needs to be activate first, but this would create a roundtrip of the request to the container of the application, increasing the traffic.
[image: image23.png]Active Milestones: | Chapter Plan v

chaﬁ«ev Plan

If the user selects a milestone from the list box and clicks the display button a report of student milestones is displayed.
[image: image24.png]Active Milestones: | Attend Project Lecture v

ulle Update for Milestone Attend Project Lecture

Check All | [(Hide Completed

Name: HEMIS No

Nikos Fountas 192434

=

The user here can select the checkboxes needed and click the update button to save the changes to the database. The Check all button was designed to let users select all the milestones that are not reported by a Supervisor.

[image: image25.png]Uncheck Al

Status:

The Hide Completed button hides from the screen the milestones that were reported by Supervisors. These features was implemented to make the life of a Unit Coordinator easier, as it has to be noted here that the report might contain more than one hundred users not just two as displayed in the screenshots.
The unit coordinator by viewing the report may decide which features would be useful for him/her. If many student milestones were reported, then the Hide Completed button could be used first, to reduce the number of results on screen and the the Check All to check those milestones which are not reported. With just three clicks, the user can complete easily the task of updating milestones in bulk.

[image: image26.png]Check All | (Hide Completed

Name: HEMIS No Status:
Nikos Fountas 192434 (m)
Completed.
F— Reported By MENm—_—- st 2007-09-02
04:53:29.212

[image: image27.png]Check All | ([Ehow Compisted,

Name: HEMIS No

‘Nikns Fountas 192434 (m)

3.11.3 The Unit-Coordinator Component
The supervisor component consists of two JSP pages that are re-used to enable users to perform their tasks provided by the new Project Milestones Monitoring system. Users assigned with the Supervisor role, have to login on the second login dialog on the Login Page. After a successful login, the Project Milestones page is displayed.

[image: image28.png]Edit Supervisees Milestones for Cohort:

. Project P— Project

He Name: i Project Title: Eieiect

192434 Nikas Fountas 1 | Project Ideas | Completed
oo &

i Project Ideas

| Completed

Select Milestones to view a report for all supervisees in Cohort

Date Event Became
Active

01 September

o 05 October 2007 | Progress Report

Status

02 September
2007

03 September

e Attend Project Lecture

As can be seen from the screenshot above the page consists of two tables. The first table displays a list of supervisees and the second table a list of active Milestones. The page was designed in this way to allow users to choose whichever approach they like to update milestones for their supervisees.

For example, a user who wants to view and update the status of several milestones of one student at the same time, he may choose to select a user from the first table and click the Update button. In this case the second page of the Supervisors component is displayed, the “Project Student Search” JSP.

[image: image29.png]Milestone Report for Nikos Fountas

September | September | Attend Project Lecture
2007 2007

Unreported

Dote Event Deadline

Becane™ 0 on Event stus Action
of Event

o los

September | October Progress Report Unreported

5

w o

Not Succesful/Not Completed
Change that to

Also, milestones of multiple supervisees can be updated at the same page.
[image: image30.png]Milestone Report for Nikos Fountas

2007 {2007

Dote Event Deadline)
Becane™ 0 on Event stus Action
of Event
o1 ios .
September | October rogress Report. Unreported hange that to: | Completed on Schedule v
5
w o
September | September | Attend Project Lecture Unreported hange that to: | Not Succesful/Not Completed v

[image: image31.png]Milestone Report for dinmmsmest

2007 2007

—T _
Became L igian VTt Status Action

of Event
01 o5 _
September | October | rogress Report Unreparted | Change that ta: v
20072007

Completed an Schedle

02 03 Not Succesful/Not Completed
September | September | Attend Project Lecture | Unreparted | Change that to; [oo M2 SRR o)

If the changes made by a user are successfully saved to the database, then the system will display messages at the top of the page informing the user. The messages show the milestones that have been updated, the old status of the milestones before the update and the new status after the update.

[image: image32.png]© Milestone
© Milestone
© Milestone
© Milestone

“Progress Report'for student Fountas’, has been succesfully updated from, ‘Tnreported'to 'Completed”|
Uttend Project Lecture'for student Fountas’, has been succesfully updated from, ‘Tnreported"to 'Completed”|
“Progress Report'for student Hart", has been succesfully updated from, ‘Tnreported'to 'Completed”|

Uttend Project Lecture'for student Hart", has been succesfully updated from, ‘Tnreported"to 'Completed”|

Users instead of selecting supervisees to view a report of milestones associated to them, can also select a milestone to view a report for all students.

A supervisor can choose to update a milestone using this way, when more than one supervisee has met the requirement. For example, a milestone that requires supervisees to upload a file is very likely that students upload their files on the last day before the milestone becomes overdue. Moreover, a supervisor may arrange some of his meetings with all his/her supervisees at the same day.

For cases such as those described above, a Supervisor can select a Milestone from the second table and view a report for all his supervisees.

[image: image33.png]Report for Milestone: Progress Report

File
Attachmes

Project Project

Tite: Status Action

Send File to Student:

Project Eile
Ideas | Unreported Affachment [(Erowse
Project Eile

Vgt Aitachment [Browse

Ideas

A supervisor is able here, to perform any kind of action. He can click one of the File Attachment links to download the attached file, send a new file to a student, or change the status of a specific milestone. He could also, choose a file to send to one of his/her supervisees, select a status and click the Update button.

The system will send the file to the supervisee and change the status of the milestone. In addition, bulk updates can also be performed. A supervisor can select to send a file to more than one supervisee at the same time, by just locating the files and clicking the Update button.

Another way of designing this page could be to have a second smaller table (or just a list) below the main table, which would display only the File related columns. This would give a professional looking to the page. However, it was not chosen, as this would probably require another button for uploading only files, which would result in two clicks if a user wanted to upload a file and change the status of a milestone at the same time. On the other hand using one button rather than two might confuse the user, as he would not know which task would be reflected in the database, the change of a milestone status or the upload of a file.

3.11.4 The Students’ Component
The Students component consists of only one page. It is the simplest page of the new sub-system. A student by logging in would view the following page. The design of this page follows the same style of all the other pages discussed in the previous sections. Students can view a status of milestones associated with them, and upload files for milestones that allow that. If the status of a milestone has not been reported by the time the student opens this page, the Upload file dialog is displayed. If milestone overdue or has been reported as completed by the Supervisor, instead of the File Upload Dialog the status is displayed, as in the Supervisors component.
[image: image34.png]Go Back
Milestone Report for Student. Penny Hart

Date Event Deadline for
Became completion of Event status
Active Event
o puntas Report07.v2 doc| [Biawse... |
September 05.0%P2" progress Report
2007 UploadFile | RETFURETS
/3 Times.
: Look i [@ Deskion
13 15 . 30ty Documents
September | September | Chapter Plan 3y Computer
2007 2007 Upload File MyRecent | S2My Network Places
‘ /3 Times Documents | 8ot pe cassic

Arot Roader
[S—
P etteons 5.5.1

€]

Desktop

3.12 Summary
This chapter, defined partial the existing milestones monitoring system used by the University of Portsmouth, introduced the requirements of the new system, with the main ones to be enabling users to edit, update, and delete milestones, and the a facility to enable users to Upload File Attachments.

Moreover, the design of the database was discussed, the Site Architecture and Content Requirements. The developer decided, to design a system, that would allow Supervisors and Unit Coordinators, to complete tasks with the just a few clicks where it was possible, and that is why the application has no more than three levels. In addition, bulk operations are one of the common tasks of this application. To allow users to perform bulk operations checkboxes was used, and for each set of checkboxes only one update button.

Finishing with the design of the system, the next stage in the lifecycle was to code the requirements of the new system.

4.
Implementation and Testing
This chapter describes how the application was implemented based upon the analysis and design described in the previous chapter.
4.1 Implementation Tools

4.1.1 Development Tool
Nowadays there are many IDEs (Integrated Development Environments) which developers can use to build and deploy a Java web application. Some of the are Sun’s Netbeans, Eclipse an IDE which is leaded by the Eclipse Foundation (Eclipse), IBM Websphere Studio App. Developer (Websphere), Borland’s JBuilder(JBuilder), Sun’s Java Studio Creator(StudioCreator), and IntelliJ by JetBrains(IntelliJ).
SD Times, in 2005 conducted a study in order to discover which Java IDEs are mostly used by its members in their workplace (Skerrett, 2006). The results of the study shown Eclipse as the most popular IDE used with 65%, Websphere came in the second place with 20%, JBuilder with 19,2% and Netbeans with 17.9%.

All of the above IDEs provide a rich set of features such as Java and JSP development, code refactoring, XML editors, support for open source frameworks such as Struts, JSF, Tiles, EJB support, Service Oriented development and many more.

However the development tool used for the implementation of the prototype were the NetBeans IDE, and its latest version 5.5.1 released in May 2007.

The NetBeans IDE is an open-source integrated development environment written entirely in Java using the NetBeans Platform. (Wikipedia, 2007b)
Netbeans 5.5.1 was chosen mainly for its integrated Struts and JPA support but also because the developer has used before it. In addition, it is the tool that all the other subsystems of SUMS are being developed and the tool mainly used by the author’s supervisor.
4.1.2 Database Management System
A DBMS is a software environment that structures and manipulates data, and ensures data security, recovery, and integrity (DataWarehouse, 2007).
It was certain that the database system that the application had to use during development it would be an open source one. There are many open source DBMSs such as MySQL Community Server, Oracle’s Express Edition (XE), PostgresSQL and many others that can be found in (Wikipedia, 2007c)
All of DBMS mentioned above, provide a similar set of features such as referential integrity, transactions, temporary tables, views, joins, triggers and more. Although they provide a lot of the same functionality, they may fluctuate in terms of performance and configurability.

The DBMS that the final version of the new SUMS application will use is an Oracle Database. However, the database chosen for the milestones subsystem was MySQL 5.0 Community Server. This system chosen, as it was already installed and appropriate configured in the developers machine but also because the developer had worked before in a couple of projects with it. Also, an important fact that was taken into account was the MySQL provided a nice set of tools such as the MySQL Administrator and the Query browser for free.
4.2 Creating the Database
One of the main advantages of using the Netbeans environment with the Java Persistence API is that allows developers to create a database in two ways.

For the development of the new system, there were two ways where the creation of the database tables could be done.
The first way, which is also one of the standard ways to create database tables, providing that the database schema already exists, is to use the DBMS facilities such as the MySQL Query browser in MySQL 5.0, and manually execute a CREATE table statement to create the table(s)needed.
Listing 4.1 - A basic CREATE statement for table milestones
CREATE TABLE `milestones` (

`MILESTONE_ID` decimal(19,2) NOT NULL,

`START_DATE` date default NULL,

`END_DATE` date default NULL,

`STATUS` varchar(45) default NULL,

PRIMARY KEY USING BTREE (`MILESTONE_ID`);

Also, MySQL Administrator supports the creation of tables in a GUI environment.

When all the tables needed by the application are created then foreign keys and foreign key relationships can be the next thing to add in the tables.
However, this way seems very time-consuming in an application which uses hundreds of tables except from the case where an SQL script is executed.
This time consuming task can be avoided by using Netbeans and JPA.

Netbeans enables developers to create database tables by creating the Entity classes first and then by using a wizard tables that map to the classes are automatically created. Recall that in JPA an Entity maps to a table in the database. (See Chapter 2, section 2.5.1 “Entities and JPA Annotations”)
In Netbeans in order to enable this feature, a developer should create a Persistence Unit. A persistent unit is defined in the “persistence.xml” file, which is created by NetBeans automatically when a persistence unit is created through the wizard. The “persistence.xml” file defines which database is being used with those entity beans and specifies the default behaviour of the EntityManager. http://trailblazer.demo.jboss.com/EJB3Trail/persistence/config/
Part of the persistence.xml file of the new system is shown in the following figure.

[image: image35.png]<class>iim.

- connection. passuord” values'
- connection.url” value="jdbciuysy
-cache.provider_class” valu
-dialect” value="ory. hibernate. dialect.HySQiDialest” />

- db. Studentlilestones</class>
b, Tellumber</class>

connection.usernane” valu

‘nfountas”/>
connection. driver_class” value="com.nysql.jdbe.Driver”/>
.

/localhost: 3306/ testl" />
org.hibernate. cache. NoCacheProvider”/>

<class>jin. sums.
<class>jin. suns. db. Unit</class>
<class>jin. suns. db. Uni tHarkForns< /class>
<class>jin. suns. db. Ui thi lestones</class>
<properties>

<property name="hibernate.

<property name="hibernate.

<property name="hibernate.

<property name="hibernate.

<property name="hibernate.

<property name="hibernate.
</properties>

persistence.

amies]

Figure 4.2 - The persistence.xml file used in the new system.
The <class> tags specify the classes associated with the persistence unit.
The <properties> element in the persistence.xml can contain any configuration properties for the underlying persistence provider, which in this case is Hibernate.
Using Netbeans, one can create a Persistence Unit by right-clicking to the name of the project in the Projects window, select New and then select Persistence Unit.
[image: image36.png]Buld Project
Clean and Buld Project

Clean Project

Generate Tavadoc for Project

RunProject
Debug Project
Deploy Project

Set Main Project
Open Required Projects
Close Project

[FiefFolder.

3 ity Classes from Database.

Java Clss,
3 Java Package.
Stuts Acion,

=
Tag Handler,

3 Tag Library Descitor.
) HbermateLHI(ETB3).java.
Struts ActiorForm Bean.

Figure 4.3 - Creating a Persistence Unit in Netbeans 5.5.1.

[image: image37.png][E)New Persistence Unit

Steps Provider and Database

L. Choose File Type Persistence Uit Name: [sumsLibePL
2. Provider and Database

Specify the persistence provider and database for entity dasses.

Persistence Lbrary: Hbernate &

Database Connetion:

Table Generation Strateay:) Create (O Drop and Create O None

Figure 4.4 - The wizard in Netbeans allows the creation of a Persistence Unit.
In the New Persistence Unit Wizard shown in Figure 4.3, a developer should enter a name to the Persistence Unit, specify the persistence library, select the database connection, and last select the Create radio button. As soon as the project is deployed, the database tables would be created.

This is how the initial SUMS database provided by Dr. Jim Briggs was created for the new system. However, when the time came to create the additional tables, the developer chose to create and append the tables using the MySQL Administrator tool as creating the additional tables with the wizard seemed to not actually creating the tables for unknown reasons.
4.3 Building the New System

4.3.1 Implementation Approach
The architecture of the new subsystem is based on the Model-View-Controller pattern, which is described in detail in Chapter 2 section “MVC Architecture”.

As the new system is logically divided in three components (role based),
1) Unit-Coordinator

2) Supervisors

3) Students

the developer decided to start the implementation process by working on each subsystem separately and one after another. For the implementation of each subsystem, the MVC pattern still applies.

The first component to implement as considered being the most important one but also the most difficult was the Unit-Coordinator subsystem.

For this subsystem, first the View (JSP pages) was designed using the DreamWeaver 8, and then they were added to the project’s WEB folder of the application. The WEB folder is the place where a NetBeans web application should keep its web pages (either in WEB or in a subfolder).
After creating the web pages, the next task was to create the Controller part of the subsystem. The Controllers built using the Struts 1.2.9 framework and the wizards that NetBeans provide for creating the Java classes.
However, it proved that building the Controller without having some parts of the model already implemented was not helpful for the complete implementation of the Controller so at the same time the developer started to implement parts of the Model (JPA Entities and Façade classes) so that the workflow of the application could be implemented. In addition, parts of the Model had to be created in parallel with the Controller so that testing could take place after each subtask of the application was written.
For the other two components, Supervisor and Students, the same steps as described above was followed.

However, for clarity reasons, in the rest of this chapter the implementation of the View, the Model and the Controller are presented as they were implemented in three different phases of the project lifecycle.

The new subsystem constitutes of fifteen “Controllers”, five Entities and five Façade classes for the Model and six JSP pages which all can be found in the Appendices.

The next section presents, the implementation of the most important parts of the application according to the author.
4.3.2 Building the Controller and Model
This section will show how the Model of the milestones monitoring system was created using the wizard that Netbeans provides. The Controller of the application (the Struts Action classes) was created graphically using another set of wizards other than the ones shown in the next sub section however, examples are not provided to avoid annoying the reader.

After this section, Section 4.3.3.2 describes important pieces of code of the application. The pieces of code, was chosen according to the importance of the requirements they implement.
4.3.2.1 Creating the Entities
NetBeans enables a developer to create Entities from database tables. Once the database tables needed were added to the database schema, it was time to create the additional Entities which would map to the corresponding tables.
Netbeans provide a wizard for this task. To run the wizard a developer would right-click the name of the project he/she works on but select the “Entity Classes from Database” option (see Figure 4.2). After doing that, the screen shown below appears.
[image: image38.png]] New Entity Classes from Database

Steps Database Tables

1. Choose Fie Type @ batabase Cormecton jdbeimysalflocahost:3308/test1 [nfountas on Default schema]
2. Database Tables
& Giemms O Database Schema
Avalable Tables: Selected Tabls:
cohort_coordnators - fil_attachment
contacts

emaimessages

emais

final_project

ideas2. Add All >>

mark_categories

mark_Farm_categories << Remove Al

mark_farms
marker_capacity
marker_type v

Include Related Tables

<o] (> G] (re

This screen asks the developer to choose the Database connection so the wizard can connect to in order to retrieve the tables. As soon as the wizard retrieves the tables, the developer should select the tables from which he wishes to create Entities. Selecting the tables and clicking next the following screen appears.

[image: image39.png]) New Entity Classes from Database.

Steps Entity Classes
1. Choose File Type Specify the names of the entiy clsses for the database tables and the entity clsses location
2. Datahase Tables
Class Nemes: | Detabase Table s Name
3. Entity Classes 2 " DosciTerk ‘E“ . ‘N
Project; [sumsLibe
Location: | Source Packages v
Package: jm.sums.db v

Generate Named Query Annotations for Persistent Felds

<ok P] (Cconesl] b

This screen asks the developer to specify the name of the Class, the package in which the class will be created and if automatic generation of Named Queries for this class is desired.

When the wizard finishes, the class is created and can be seen in the package specified.

[image: image40.png]=@ jim.sums.db

PEEEEEREEREEEE

AudtTraljava
CotegoryMarks.java
CategoryOptionCriteria ja.
CategoryOptionGroups.jav
CategoryOptions java
Cohort java
CohartCoordnetars.java
CohartFacade java
Contacts.java
Emsinessages java

B
Filettachment java

Figure 4.6 - The projects window in Netbeans.
In this screenshot, some of the Entities of the new milestones monitoring system are shown.
Opening the Emails.java file it can be seen that Named Queries, JPA Annotations and the fields that correspond to the Emails table columns were created by NetBeans. The Entity now is ready to be used in the application.

[image: image41.png]-ava | |@) UpdateStudentshMilestonesAction.java X | [@) Studentview.java X | (@] UploadFile.java X | (8] Projectstudentoearch.jsp X | |@) Emails.java |
€D FAFEH | DL %[ETF
T

* Entity class Enails

* Bauthor briggs)

s

BEnticy

@Table (name = "EMATLS")

ONemedQueries({
@NanedQuery(name = "Enails.findByEnail”, query = "SELECT e FRON Enails e VHERE e.enail = :email”),
@NanedQuery(name = "Enails.findByEnailld”, query = "SELECT e FRON Enails e VHERE e.enailld = :emailld")

B R

N
public class Enails inplenents Serializable {

o AVt

fColumn(name = "EMATL", nullable = false]
private String enail:

fLob
@Column(name = "USERID")
private String userid;

a2
@Colunn(nane = "ENATL_ID", nullsble
private Bighecinal enailld;

false)

/7% Creates a new instance of Emails +/

public Enails(] {

4.3.2.2 Uploading a File Attachment
One of the most significant requirements of the new system was to enable students or supervisors to upload or retrieve a file from the database (see Chapter 4, section 3.2.3 “Requirements Analysis”). For the implementation of this Use Case, a Java class was created named “UploadFile” which contains the Java code for uploading the file to the database. For both students and users the same class is instantiated on the corresponding Action Classes.
As it can be seen from the Use Case, Supervisors should be able to upload separate files for individual users. The piece of code that accepts the files selected by the supervisor is shown below.

[image: image42.png]Hashtable ht = new Hashtahle() ;
ry(
J/Af forn elements are empty catch the exception and do nothing
Bt = forn.getMultipartRequestHandler () .getFileElenents) ;
Joaten Exception ex) {
ex.printStackTrace (] ;
)
finally(

if(Ihe.dsEmpty () {
for (Enumeration e

ht.keys(); e.hashoreElenents|) ;) {
String mid = ((String)e.nextElenent (] .toString();
FornFile file = (FornFile] ht.get(uid):
UploadFile filel = new UploadFile(_file);
Filel.setHidden2stud (null) ;
Filel.setTinesLett ((short]-1);
filel.Upload(counon. toInteger (wid)} ;|

Figure 4.3 - Replicated from “StudentMilestonesAction” class.

Since the user is able to bulk upload of files, the application had to be able to receive all the files selected from the user. The only way to get the multiple files was to use the getFileElements() method of the getMultipartRequestHandler() method provided by the ActionForm instance (“form”) on this Action. MultipartRequestHandler provides a standard interface for struts to deal with file uploads from forms with enctypes of "multipart/form-data" (Struts, 2007). Nevertheless, this class provides more functionality than the Struts documentation states. Users can also retrieve all the values of the text inputs in the JSP page as well as handling the request object and more.

The getFileElement() method as its name implies gets all the values from the inputs of type File and stores them in a HashTable. If there are no file elements, (user has not selected a file) the method returns an Exception which should the application catch. In this specific case, not throwing the exception is fine. The isEmpty() method checks if the HashTable contains any elements and if not it exits. Otherwise, the key value is return from the element in the HashTable.

Next, the UploadFile class in instantiated and two of its properties are set. The setHidden2Stud acts as a flag, which according to the parameter passed, displays the file upload facility to the Student JSP Page. Finally, the Upload Method is called.

[image: image43.png]public boolean Upload(Integer studentMilestoneld) throws BusinessException{
if (checkFile().size() == 0){
StudentlilestonesFacade £ = new StudentMilestonesFacade (]

//get the Student milestone record from the db.
Studentiiilestones studiilestone = f.findByStudlistnld (studentliilestoneld ;

Filettachuent file = new FileAttachment (]:
i (studlii lestone. getFileAttachnentTd() != null) {
file = studliilestone.getFileAttachnentId (]

File.setFileAttached (getFileData(]] ;

file.setFileliane (getFileane (] ;

file.setFileSize (((Integer]getFileSize (] .toString(]];
File.setContentType (getContentType] ;

J/set status to hidden so that once uploaded,
//the user's brovser will not display the File Attached msg.
//This atcribute will not be checked in the supervisors page.
file.setStatus (getHidden2stud (] ;

if (getTimesLeft()
nt i=1;
int s = (int)file.getTimesLeft();
short val = [short) (s + 1)

1) ¢

[image: image44.png]file.setTimesLeft (val];

)
studiilestone.setFilehttachnentTd (file) ;

ry
£.updateStudentiilestone (studlilestone] ;

} catch (BusinessException ex) {
ex.printStackTrace] ;
throw new BusinessException ex.tostring(), ex);

J/retum false;

return true;

Figure 4.4 - Replicated from “StudentMilestonesAction” class.

The upload method is the method which the attached file is saved to the database in the “fileAttachment” table. This method takes as a parameter the primary key of the student milestone record in the “mstudentmilestones” table.

The checkFile() size, is the method that checks the content type of the file and its size (set by the Unit-Coordinator). If the file is not of the desired type or (currently hard-coded as "application/msword") or larger than the desired size an error message will be returned no file will be uploaded as the upload() method will perform no operations. Then the method checks if a file was already uploaded for the specific record by retrieving the record from the database.
[image: image45.png]public StudentMilestones findByStudMstnld (Integer studMilestoneld){
Entitylanager en = EntityUtil.getBntityManager () ;

7/£ind by Primary Key
Studentiilestones milestone = en. find(Studentlilestones.class, studiilestoneld:

return milestone;

Figure 4.2 - Replication from “StudentMilestonesFacade” class.

If there was no file associated and the value of the Attachment_Type_ID (see,) is empty an entity is created. Each property of the new (Transient) Entity is set and the file is saved to the File_Attachment table through the updateStudentMilestones method.
4.3.2.3 Reporting Supervisees’ milestones.
Another core requirement for the new system was to enable supervisors to report milestones for their supervisees’ individual or in bulk. The Java code, which implements this functionality, can be seen below.
[image: image46.png]for (int 1=0;i<_changeToStudld. lengthsi+t) {
Studentifilestones studiilestone = new StudentMilestones();
studiilestone = studFacade. FindBYStudistnla comnon. toInteger |_changeToStualali]});

String oldVal = studiilestone.getStatus (] .getStatusCode (] ;
String oldStatus = studiiilestone.getStatus (].getStatus();

for (int 3=0;3<_changeTo. length;3++
77 if blank is selected from the <select> exit
if (_changeTo[j].equals{"07)) break;

String newval = _changeTo[31;
Statuses nevStatus = sf.findByStatusCode (newVal ;

J/eheck if value needs to be changed
if (loldVal.equals (nevVal)) {
studiiestone. setStatus (nevStatus) ;
studti Lestone. setDateAdded (counon. getCurrentTineStanp (] ;
studti Lestone. setLastEdited (comnon. getCurrentTineStanp (] ;
studiilestone.setStaf o (Person] session.getAttribute ("person”]] .getStare (]

newstatus. getStudentiilestonesCollection) . add (studlilestone) ;
studFacade. updateStudentMilestone (studlfilestone] ;

[image: image47.png]//create usg
String[] msg = (studiilestone.getlilestoneld (] .getDescription(],
Studti Lestone. getStudentTd(] .getSurnane (] ,0ldStatus, nevStatus. getStatus (1) ;

nessages]. add (Actionliessages. GLOBAL_MESSAGE,new ActionMessage [“error.update. succesfull”,usg)) ;
)
break;

Figure 4.4 - Replicated from “UploadFile” java class.

The code begins with a for loop statement, which loops through the elements of the “changeToStudId” array. This array contains the primary keys of the students’ milestones records that were displayed to the Supervisor. The basic idea behind implementing this requirement was to use two String arrays with the first array named “ChangeTo” to keep the values of the selected indexes of the drop down controls, and the second Array to keep the primary keys of the milestones shown to the Supervisor. Diagrammatically this could be represented such as

ChangeTo[]

 ChangeToStudId[]
	2
	
	123

	5
	
	124

	0
	
	125

[image: image48.png]<td>Change that to:
<Mtml:select property="ch

<html:option value="s'
</htm1:select>
<input type="hidden" valu
<ras

0">enbsp;anbsp; enbsp
2>Completed on Schedule</htnl:option>

angeTo" value="0">

</htm1;option>

“>Hot Succesful/Mot Completed</htnl:option>

${studii Lestone. studnstnid} " nane="changeToStudld"”

”

The above piece of JSP code, which represents a column on the table that shows the supervisees milestones, may execute multiple times if the Supervisor has more than one supervisee to create the following table.
[image: image49.png]Unreported

Change that to: | Completed on Schedule v

Completed Olundo

Change that to: |Nat SuccestulNot Completed |v.

Unreported

ate

By selecting the appropriate statuses from the drop down menus and clicking, the update button the two Arrays would populate with the values as shown in the diagram.

Now seeing the code again the for loop retrieves the first value from the ChangeToStudId array and then the record that its primary key corresponds to the value in the array is fetched from the database.

If the status of the record, is equal to the selected status, which means that the user has not changed the value in the drop down menu, the function exits. Otherwise, the new status is set to the Entity together with some other properties such as the date the milestone was last edited, or who updated this student milestone, and then is saved to the database. The rest of the code creates a message that will be displayed to the user if the update was successful (discussed later).

4.3.3 Implementation Problems
During the implementation of the new Project Milestones Monitoring subsystem many problems came up some really important that delayed the implementation phase considerately. This section describes problems the developer faced during the implementation of the “Editing a milestone” feature.
· Editing a Milestone
The process of editing a Milestone requires a user, most likely the Unit Coordinator to view the Milestones page and on that page to click the Edit button of the Milestone that needs to edit.

The ‘AddMilestones’ page as already mentioned is reused for adding, viewing and editing a milestone. The problem faced with the displaying of the add milestones page on edit mode where the controls are filled with the values of the milestone to edit and especially with the drop down menu.

This control was specified so that a user can select multiple values, in this case Units.
[image: image50.png]<c:otherwise>
<Mtml:select property="units” miltipl
<c:forBach itens="§{Units}" var="u">
<html:option value="§{u.unitId) ">§(u. uni tliane)</html ;option>
</c: forBach>
</html:select>
</c:othervise>

17 styleClas

While adding a milestone the control worked fine, that was not true on editing a milestone, as the multiple attribute did not seem to work. If a milestone were associated with more than one Unit in add mode, in edit mode the control would display only the first unit.

In addition, another issue came up with the multiple selection control on edit mode. A user editing a milestone might not notice that there are more than one Units associated with the milestone, as the second milestone may not be viewable to the user. The user would have to scroll down the list to in order to see it. According to the author, that was not a good design principle.
Therefore, another way had to be found to enable a user to edit the Units with a milestone. The developer decided to keep the select box for adding a milestone but to replace it with check boxes in the edit mode.
To implement the “checkboxes” solution Struts provide a tag named <html:multibox >. This tag requires Arrays of type String to be declared in the action form in which all the Units would be stored in the first String and in another Array, the associated Units. Then by iterating through the lists, any item that would appear in both lists would be displayed as checked in the JSP. Gurovich (2005) has written a tutorial about this and the pieces of code that do exactly what is needed in shown below. The Listings are copied from this tutorial.
[image: image51.png]<logic:iterate name='testForm”
property="mountains

fa="mountain">

<% create the checkbox and selected attribute
<html smuT tibox property="selectedMountains’>
<beaniwrite name="mountain’/>

</t T o

<%-- create the Tabel, note that “b
<beaniwrite name="mountain’/>

tag will format it vertically

</logiciiterates

In this example the variables “mountains” and “selected mountains are String variables in the ActionForm associated with this form.

[image: image52.png]// Instance variables

Jrmountains "pre-selected
brivate stringl]
SelectedMountains

CEverese”, "k2", "Lhotse"};

/*the ten tallest mountains to iterate throught/
brivate stringll
mountains

J"Lhotse”,
makalu","Kangchenjunga south”,
Lhotse 1iddle”, "Kangchenjunga west",
Lhotse shar

However, this solution could not be implemented by the developer for a number of reasons.

First, the String variables in the example are hard-coded but in the application had to be dynamic. So a way that was tried by the developer to do that was to create a new instance of the add_milestones_form, initialise the two String Arrays required and store the instance in the request or session object. However this solution did not work, as the bean could not be found when the page rendered, neither in the request scope nor in the session scope. Therefore, another way of doing this had to be found.
The first idea to implement the dynamic checkboxes without the <html:selectbox> was to fill two ArrayLists, one with all the Units from the database and the other with the units linked with a milestone. Then the two ArrayLists would be compared, if a milestone on the second ArrayList is also contained in the first ArrayList, copy that milestone to a third ArrayList and then concatenate the first and the third list and store it in the request object.

However, this leaded to nowhere, as still there would be no way of distinguishing the units associated with a milestone from all the Units in general. The next thought was to use a HashMap, a data structure that maps keys to values and the two ArrayLists as stated.

In the key-set of the HashMap, the Unit objects would be stored and in the value- set a Boolean value, which would be true for units associated with a milestone and false if a unit is not associated.

To implement this idea, first a HashMap needed to be created. Then the all the Units will be stored in the key-set mapping to a false value.

[image: image53.png]Map<Unit,String> selected = new HashMap<Unit,String>();

//put all the Units to the key set of the map.
for (int 3

0: 3<Units.size(]: 3++1(
selected.put (Tnits.get (3],"false”) ;

Then a second loop needed to find the common Units and change the values of those Units in the HashMap to true.

[image: image54.png]Integer unitld;
Integer Unitilestonesld;

/7100p through the Arraylists to find comson Units.
for (int i = 0; i<Unitiilestones.size(]; i+ (
for (int 3 = 0; 3<Units.size(]: 3+ (
wmitld = Units.get (1).getUnitId(). intValue) ;
UniclfilestonesTd = Unitlfilestones. get (1) .getUnitId() . getUnitId() . intValue) ;

/At comon objects found,
J/change the value of the comnon Unit in the Hashlap to true
if (unitId.equals (UnitHilestonesTd)) {

selected.put (Units.get (3], "true”);

Then in the JSP page, a loop had to be written which loops through the Units in the HashMap and the problem of editing the Units applied to a milestone was solved.

[image: image55.png]<c: forEach var="n’

itens="§{uap}">

<input. type="checkbox” id="editinits” name="editUnits” value="§(n.Key.unitId)”
<ciif test="§(m.value != false}">
checked=""

£5/>§(n. key. uni tCode}

[image: image56.png]Date Milestone becomes overdue:

Units Applied To:

Milectamn M oc,

4.4 Testing the Application
After the system designed and implemented the next and last stage in the development phase of the application was the testing stage. The testing took place in the Windows computer used for the development of the application.

For the testing purposes of this prototype, the White Box and the Black Box methods were used.

4.4.1 White-Box Testing
White box is a software testing technique whereby explicit knowledge of the internal workings of the item being tested is used to select the test data (Webopedia, 2000). In other words, in White Box testing the tester, enters some data as an input and knowing exactly what functions of the system will be executed for this input, checks if the output of each function is correlated to what the function intends to do.
White box testing was performed extensively throughout the development. Every time a new method, class or JSP page was added to the application, it was tested in debug mode. In debug mode, the flow of the application can be tested, as well as inputs and outputs of methods or classes. White box testing was essential especially for this application as it uses lots of ‘if’ statements and loops.
4.4.2 Black-Box Testing
Black-box test design treats the system as a "black-box", so it doesn't explicitly use knowledge of the internal structure.

(Rivest, 2004). This means that the application can be tested from someone usually a specialized person in testing, the ‘tester’, without this person being informed about the internal workings of the system. This method follows the concept, that the tester will provide some input to the system’s interface, and he/she will expect an output which will meet the specified requirements of the system.

For this application black box, testing was performed by the developer using the use case descriptions of the system. During black box testing several bugs have been identified, some of them corrected and some not.
4.4.3 Summary
After finishing the design, it was time to convert the Use Cases and Use Cases descriptions into Java code. However, no code could be written without creating the appropriate classes. Netbeans wizards were used for the creation of the Struts Actions and ActionForms and for the creation of the JPA Entities.

During the implementation of the application, several problems appeared with the most important one to be on the edit of a milestone. The problem was that the select control being used for adding a milestone could not be used appropriate in editing a milestone. The solution was to replace these controls with checkboxes when the used requests to edit a milestone.

Finishing with the implementation of the three components, Unit Coordinator, Supervisor, and Student, the application had to be tested as whole.
5.
Evaluation and Conclusions
This chapter evaluates the prototype against the requirements and evaluates the process followed on developing the system. To evaluate the requirements the use cases was used extensively and as in the testing stage. The usability guidelines were also taken under consideration.

The task of evaluating the application was done only be the developer of the system. It would be a lot better to have the client to evaluate the application as well, however there were some technical problems trying to install the application in the client’s environment. On the other hand, having other people to evaluate the application has not been chosen, as the developer considered that having people that are not within the target group, as defined in Chapter 3, section 3.2.2.3, would not provide reliable comments or results. The new system targets a specific group of users.
5.1 Requirements Evaluation
The new system had to meet several requirements that can be found in Chapter 3, section 3.2.3 “Requirements Analysis.
1. Setting up milestones for Each Cohort

This requirement was one of the most important requirements that the application should meet and it does.

Users by opening the Milestones page (see Appendix) can click on the link on the top of the page to view the Add Milestones page. There users can fill in the required fields and click the Save button to save the changes to the database. In terms of validating user input, if any values entered in the fields were incorrect, error messages are displayed at the bottom of the page specifying in which fields the errors were detected.

If there are no errors, the application returns to the Milestones page. From there he/she is enabled to select a Different Cohort if it is desired and the click again on the link on the top of the page.
2. Edit Milestones

The new system meets this requirement. Users can open the Milestones page and click the Edit button of the milestone they would like to update.

However, there is a problem with the File Attachment drop down menu. When the page is rendered, the control is displayed with its default value, which is an empty value, so the user has to select again the desired attachment type, which is wrong.
3.
Associate File Attachment with particular milestones

According to the author, the system partially meets this requirement.
Using the new milestones monitoring system, students can upload a file attachment for a specific milestone, and Supervisors can download the file that was uploaded by students.
4.
Bulk Update of Milestones for a selected Cohort

The system meets this requirement and it does very well. A user can select the Milestone he/she wants to see a report and view a list of individual milestones associated with students of a particular Cohort. In addition, the user can click on the Hide Completed button to hide the milestones that had already been reported. In addition, a Toggle button which checks or uncheck the checkboxes of milestones that had not been reported by Supervisors.
5.
Supervisors should be able to update (individual or in bulk) Milestones of their supervisees.
This requirement has met and certainly very successfully. Supervisors can login and view the Student Milestones page (see Appendix). In that page, they have the chance to view a report of milestones and a report of supervisees. They are able to select multiple milestones and by clicking the Update button, they can view a report of milestones associated to their supervisees and update any milestone, individual or in bulk.
6.
Supervisor should choose if a penalty should be applied or not.
Unfortunately, this requirement has not been met due to time constraints.
The application also had to meet non-functional requirements. As stated in section 3.2.3, in Chapter 3, the major non-functionality requirement was the response speed of the application in some standard user actions such as inserting, updating or retrieving data. The author believes that the application copes well with the response speed; however, it should be stated that safe conclusion on whether this requirement has been met or not, can only be made if the application was tested with the amount of data that the existing milestones monitoring system interacts with.

Furthermore, the application had to meet some usability guidelines as defined in Chapter 3, section 3.2.4. Most of these guidelines are related to the user interface of the application.
The author believes he did his best, to follow the guidelines during the design of the user interface but the result seems not to be quite as usable as expected. One of the main weaknesses of the interface is the navigation system chosen. Having drop down menus in the top of the page is not very usable, because there is an issue here, called “information hiding”, which occurs when drop down menus, or any other kind of html controls hide a significant amount of information on a page, and here is where the navigation system fails.
Another requirement that the application had to meet was to be maintainable.

The author interpreted this requirement as that the application’s code and the components of the user interface should be written in such a way that any change or fix by another person other than the developer, should be done easily without spending too long in order to understand how a particular functionality works. According to the author, this requirement has been partially met mainly because of time constraints.
In the beginning, the developer had in mind to implement the user interface by reusing JSP components that would be implemented as fragments. An example of such a component would be the tables that are used in the application. The main idea was to have a JSP fragment, consisting of a general HTML table, and then according to the user and the role(s) that was assigned to him, the JSP component would be displayed accordingly. However, this was implemented partially, as the developer faced significant problems on passing objects to the JSP fragment using tags from the JSP standard tag library.

Moreover, the Java code that is written in the Controller component of the application has to be maintainable. The developer believes that some of those classes that can also be found on the Appendices cannot be easily maintained, because there is too much code in specific classes that had to be reused for many tasks that the user is allowed to perform.

5.2 Project Management
5.2.1 The Initial Plan
[image: image57.png]Task Name
‘Agres Snesifcation wih Supervisor
Study Project Maniaring Processes
Stucy Stts 2 Framework

= Requirements Elicitation

Bl Recuirements from Project Coorc
= Requirements Analysis
Define Ste Reguiremerts.
Define Ste Characteritios
£ Design
Procuce Disgrams
Soltian Defintian
= Implementation
Implement e Iterface
Codng
= Testing

Start
Fritamsn7
Fritamsn7
Friooan7
FrioBen7
Frigaan?
Mon 250607
Mon 256107
Fri2a0807
Tue 030707
Tue 03707
Tue 100707
Tue 170707
7days Tue 1700707
21 days| Tue 17,0707
3 days Wed 150807

Duration
1 day
10days
3days,
1day

1 day
6days
4days,
2days,
10days
5days,
5days,
21 days

Fiish

Fritamsn7
Th 310507
Tue 05807

Prede [api_ [Way [0
1

. =

Fatsosor[.

Frigaman?
Mon 020707
Thu 268107
Mon 0207107
Mon 160707
on 08707
Mon 18707
Tue 140807
Wed 250707
Tue 148107
Fri 170807

7

0

Figure 5.1 - Screenshot of the Initial Project Plan, MS Project 2002
The project started as soon as the exams of the second semester finished, and that was on 09 June 2007. The first task of the project was to gather the requirements of the new system. Most of the requirements were gathered in two meetings that the developer had. The first meeting was with Dr. Penny Hart, at 9th of June, where the existing milestones monitoring system was introduced, and some of the requirements for the new system was defined. The rest of the requirements were defined in a meeting with Dr. Jim Briggs the Administrator of the existing milestones monitoring system a few days later.

After the major part of the requirements was defined, the developer went back home for two weeks and returned on 24th of June.

A few days later the analysis and design of the application started. First, the requirements specification was produced and a small draft of Use cases.

Immediately after the requirements were written down into a more formal document, the Content requirements diagram was implemented.

Finishing the Content requirements diagram, was time to draw a draft Site Architecture diagram, in order give a starting point in visualizing the application and decide the structure of the application.

That time it was decided, to split the application in three components (Unit Coordinators, Supervisors and Students and apply an object-oriented analysis for each component. After that decision made, the developer decided to abandon the original plan was and redefine it to include milestones for the design and implementation of each component.

After the implementation of the application, the developer started the writing of the report. The writing finished at the beginning of September 2007.

5.2.2 The Rewrite
During a meeting with the supervisor, on September where the report was discussed, it became apparent that that the Literature review Chapter of this report was more descriptive rather than discussing and evaluating things such as frameworks, so it was obvious that the review chapter had to be modified.

The author decided, to introduce the JavaServer Faces framework and compare it with Struts.
5.2.3 The Object-Oriented Analysis and Design Approach
The object-oriented methodology used, Requirements Gathering (Requirements Modelling (Use Cases)(Design of the application (Coding (Testing worked really well. The most important thing according to the author, of this approach is the Use cases. The use cases were used in the development of the prototype but also used by the developer in testing to ensure all the required functionality was built and tested. The use case descriptions also were very useful. Overall, the use case descriptions were sufficiently detailed.
5.2.4 The Lifecycle
For the development of this application, it can be said that none of the formal lifecycles method such as the waterfall model or the spiral model have been followed. The approach followed was similar to the modified version of the waterfall model, but it was based on creating prototypes as soon as possible, which is not the case on the modified waterfall. During the implementation or when discussing again the requirements with the supervisor, a large number of iterations took place from implementation, to amend the Use cases and use case descriptions, then amend the design of the database, or the site architecture and so on.
5.2.5 The Major Underestimate
Certainly, the most significant underestimate on developing the new system was the difficulty level of some of the requirements and the time needed to implement those requirements. For example, to implement the requirement “Supervisors should be able, to update student milestones in bulk took almost three days more, when initially it was expected to be completed in two days in total. There were many cases where the initial time the developer thought it was needed for completion of a task, has been underestimated.

The main reason was that the developer never had before the chance to develop an application like this one before and during the design and implementation phases, several problems appeared that the developer has never faced before. Without having any previous experience on solving problems, usually the wrong decisions were made which later on had to be reconsidered.
5.3 Sources of Information
The first place to look for information regarding the report was in the library of the University of Portsmouth. The library had an adequate number of books regarding some general topics like web design, usabilty, object oriented analysis and design, UML and design patterns, however there was a clear lack of books concerning open source frameworks in Java.

It was certain, that the major source of information about the frameworks used would be the Internet. However it took a while in order to find the appropriate information on the Internet because the information was either out of date (old versions of the two frameworks used) or not of a good quality. One of the sites used especially during development of the application was the

http://www.jspolympus.com/Struts/Struts.jsp
This site contains many useful links to other sites for almost any kind of information a developer needs to work with Struts. For JPA, tutorials on the Internet, and a book, from Bauer & King (2006) the creators of Hibernate were mainly used.
5.4 Learning Process
This project has certainly, taught the author a lot about developing a complete web application using a design pattern, and open source frameworks such as the Java Persistence API and Apache Struts.
The need of using a design pattern such as the Model-View-Controller in a medium size application has been finally understood. The MVC pattern was used before by the developer in small applications where the importance of using a pattern was not quite clear. In addition, it was the first time that the developer had to take some real design decisions on user interface issues and that makes him feel really happy (even though in some occasions the wrong ones has been taken).
In addition, it was the first time, that use cases and descriptions were used to document the functional requirements of the new system and proved very useful, especially on the testing stage.
After completing this project, the developer feels confident, that he gained a precious amount of knowledge that he did not have before he begins this dissertation. The WDIEP, WEB1P, and WEB2P modules of the Internet Systems Development course were proven invaluable. If the developer had not been taught those units, it is certain that none of what the reader had the chance to read would be written so extensively. In addition, in terms of implementation, two or three requirements at most would have been implemented.

Last and most important is the fact the developer would be enabled in the near future to go for job hunting, having an important knowledge on some of the most popular frameworks that constitute the Java web-programming environment.
5.5 Meeting the Objectives
The aim of this project was to design and implement a working milestones monitoring system for the University of Portsmouth using the Model-View-Controller design pattern and open source frameworks such as the Apache Struts and the Java Persistence API.
The aim has been met. The new system is working and enables a Unit Coordinator to set milestones for all students of a specified Cohort, add, edit and delete milestones, associate file attachment with milestones, recording of milestones met/not met (including in bulk).

Supervisors can view a report of supervisees’ milestones, and update milestones including in bulk. In addition, they can view file attachments uploaded by their supervisees and in turn upload any files as response to the supervisees.

File attachments can also be uploaded in bulk.
Students are able to view a report of milestones, and upload a file attachment if the milestone requires to.
Toward this aim, the author had to meet the following objectives:

1. To gain a better understanding of the Jakarta Apache Struts framework.
The author had already a brief knowledge of what the Apache Struts framework is and why it is used today in thousands of web applications. However, he did not have the change to get deeper in the internal workings of the framework. After studying the appropriate resources, writing the Literature Review chapter, and actually using Apache Struts to build the new system the author believes that he has gained a better and deeper knowledge of the features of this framework.
2. To learn the basics of Java Persistence API that was never used before.
The Java Persistence API is and Object Relational-mapping framework, which is used by developers to access and retrieve data from a database using the domain, model of the application. The author had a brief knowledge on ORM frameworks, as Hibernate Core was used in application that he had to build as a coursework for the Web Programming (WEB2P) module of the second academic semester. As already mentioned, JPA is a wrapper of the Hibernate Core framework, which means that it uses the engine (backbone classes) of the Core framework, but it has a different interface (methods).

However, the developer was completely unaware of the JPA Annotations, the main feature that really distinguishes JPA from Hibernate.

After implementing the Model of the new milestones monitoring system-using JPA the developer, feel confident that he has gained a great knowledge on JPA and Annotations. Using JPA for persistence was one of the most fascinating things about this project. Annotations also helped the developer to understand better relationships between tables in the database schema.
3. Find out about milestones in literature.
Unfortunately, this objective has not been met. The author did an extensive research on the Internet, using most of the major search engines but no information could be found. The only information that could be found was just definitions of what a milestone is and where it being used today.

Finding no information about milestones in the literature negatively affects the Literature review chapter, which contains information only about the MVC pattern, and the frameworks used.

However, the author hopes that readers can easily understand what milestones are, and what role they play in a milestones monitoring system
4. To find out information about the internal workings of the existing Project monitoring sub-system and find out how relevant people use this system.
This objective has been met. This objective was one of the most significant stages of the UML approach followed in this dissertation. The requirements of the system were gathered by using interviews and were modelled in the requirements specification and in the Use cases.

The developer had never the opportunity to appreciate any analysis and design approach on other applications he had developed. However, during the implementation of the new system, the developer realized that any project should always follow an approach even if the application is relatively small.

The developer by the end of this project feel astonished on how helpful, the UML approach was, and feels that in future object oriented analysis and design would be the standard method to use in building applications.
5. Design a solution
Designing the solution was also an interesting part in this dissertation.

The Site architecture and content requirements diagrams (see Chapter 3, section 3.4.2) together with some usability guidelines were used. The site architecture diagram proved very useful at the beginning of the design as they helped a lot to visualize the navigation but also the contents of the application.

6. Implement the solution using Apache Struts and JPA
This object has been met. The implementation of the system has been the hardiest part of this dissertation. As has been mentioned throughout this report the Apache Struts framework has been used in order to apply the MVC design pattern to the application and the Java Persistence API.

JSP pages and JSP components are reused in most of the cases in order to make the application maintainable. In addition, Struts “Action” classes, classes that Struts provides for the business logic, are reused a lot in the application.

The new milestones monitoring system allows Unit Coordinators, Supervisors and students to interact with milestones.
5.6 Suggestions for Further Work
The new milestones monitoring system, seems to cover most of the users of the existing system needs, however it would be more usable if more features would have been implemented.

First, in terms of requirements, there is one requirement, the calculation of penalties for student milestones that had not been completed by students that have not been implemented during to time constraints. Definitely, this feature would need to be implemented in future versions of this system, as it is one of the major requirements and a significant feature of the existing system.

Another feature, that would be useful, is a facility, which would produce statistics such as what percent of students have completed a specific milestone. If for example the milestone was related to attendance in a lecture, the Unit Coordinator may view how many students attend the lecture. Statistics are always useful and through them interesting conclusions can be produced.

Another facility of a future version of the system would be an email facility to remind supervisors or students to complete the task associated with a milestone.

E-mails can be sent by the Unit Coordinator manually or automatically by the system in a specific data that would be set up by the Unit Coordinator.
In addition, according to the author, a useful feature would be a facility to associate possibly a blog or a forum with particular milestones especially for those milestones significant to students. There, a discussion between the Unit Coordinator and students about completing tasks associated with milestones or any general queries could be discussed.
5.7 What would the Author do differently
If the project had to be implemented again, definitely few things would be done differently.

As mentioned in then end of section 5.1 of this chapter, the user interface of the application initially it was to be implemented using lots of JSP fragments, in order to make it more maintainable and also reduce the coupling of components such as the HTML tables that are being used a lot on this application to display data.

However, the developer did not manage to create the pages in this way and that is one of the major things that the author would do.

Another thing that the author, would do is to change the navigation of new system. The navigation scheme chosen was a top navigation panel, with two from down menus, where the user has to select a value from the two list boxes and click a button to navigate to the page desired. While this may cope well when few options are in the list boxes, having a larger number of options would make the navigation system to hide parts of the screen which not only means bad design, it also looks ugly. The navigation system to replace the existing would be a left panel menu, probably with drop down menus. In addition, to make the navigation more usable, pages would load automatically when the selected index of the second drop down menu changes. This could be implemented in JavaScript.
Another important thing to be done would be to create another layer in the application with Java classes that would help on reusing the Struts Action classes more efficiently. Most of the controllers would be used just to control the application flow wherever it was possible. Currently, the Action classes are “bleeding” of Java code, making them almost not maintainable and hard to understand.
In terms of project management, the author would definitely organize the time more efficiently. There was a major underestimate on the amount of time it was initially thought, with the amount of time the project actually needed according to the skills of the developer in order to complete.
5.8 Finally
The existing milestones monitoring system which is a subsystem of PUMS, was developed in a non Model-View-Controller style, and also lacks features that would cover the needs created during the time it was being used. This is normal and it happens in almost any software application. As the time goes by, an application’s environment changes, people that uses the system change, so a major update in the application would be needed at some point in time.

PUMS was not the exception in this rule. Unit Coordinators and Supervisors identified new needs that PUMS should take care of, and the process of implementing a new Project Unit Management system started, and the name of the new system is SUMS.

The system developed in this dissertation aims to replace one of the five sub-systems that SUMS consists of, and that is the Project Milestones Monitoring System. The new milestones monitoring system had to be developed using the technologies and web frameworks that the other four sub-systems are being implemented.
The new system was developed in an MVC style using the Struts framework, and the Java Persistence API, and it proved that these technologies could be easily used to develop a web application and make it maintainable and stable. With some minor changes, the system developed can be integrated successfully with the rest of SUMS, and SUMS as a whole application can definitely cover the needs of its users in the University of Portsmouth for the years to come.
References:

Apache(2007), Struts User Guide. Retrieved from: http://struts.apache.org/ 1.3.8/userGuide/index.html
Aurum. A., & Wohlin. C. (2005) Engineering and Managing Software Requirements. New York, USA: Springer

Bennett S. & McRobb S and Farmer. R. (1999). Object-Oriented System Analysis and Design using UML. Berkshire, England, UK: McGrawHill.

Cohen, J. (2003). The Unusually Useful Web Book: New Riders.

DataWarehouse (n.d). Data Warehouse: Glossary. Retrieved August 22, 2007 from the University of GeorgeTown’s website: http://uis.georgetown.edu /departments /eets/dw/GLOSSARY0816.html
Developer07: JSF Lifecycle:http://www.developertutorials.com/tutorials/java/jsp-application-lifecycle-050504/page2.html
Eclipse. Eclipse IDE website: http://www.eclipse.org/org/foundation/
Gurrovich, D. (2005) Dynamic radio buttons with Struts. Retrieved July 13, 2007 from: http://www-128.ibm.com/developerworks/java/library/j-sr4.html
Heider, S. & Gorler, A & Reisbich, J. (2006). Getting Started with Java Persistence API and SAP JPA 1.0. Retrieved August 16, from:

Hiberbate. (2007). Chapter 1. Architecture. Retrieved August 22, 2007 from

Hibernate’s website:http://www.hibernate.org/hib_docs/entitymanager/ reference/en/html/architecture.html#architecture-ejb-persistctxscope
Hibernate: Hibernate’s Website: http://www.hibernate.org/
IntelliJ: JetBrains IntelliJ IDE: http://www.jetbrains.com/idea/
IBM07: http://publib.boulder.ibm.com/infocenter/ radhelp/v6r0m1/ index.jsp?topic=/com.ibm.etools.struts.doc/topics/cstrdoc001.html
JavaRanch (2002). JavaRanch Newsletter, March 2002. Retrieved August 12, 2007 from http://www.javaranch.com/newsletter/Mar2002/listing2a.html
JBuilder. Borland’s JBuilder: http://www.borland.com/de/products/jbuilder/
JCorporate Glossary. (n.d). Retrieved March 13, 2006 from the JCorporates’ Web site: http://www.jcorporate.com/expresso/doc/edg/edg_go01.html
JSF07: The Sun’s JSF web page: http://java.sun.com/javaee/javaserverfaces/
Man, D. Kito . (2005). JavaServer Faces in Action. Greenwich, USA: O'Reilly, 2005

MCCBlog (2007). Craig McClanahan’s personal Blog: http://blogs.sun.com/ craigmcc/date/20040927
MIT. (n.d). Usability Guidelines. Retrieved August 25, 2007 from the MIT, Information Services and Technology website: http://web.mit.edu/ ist/usability/usability-guidelines.html
Monson-Haefel, R. (1999). What is a Session Bean?. Retrieved August 22, 2007 from: http://www.jguru.com/faq/view.jsp?EID=730
Nielsen, J. (1999).When Bad Design Elements Become the Standard. Retrieved August 28, 2007 from the Jacob Nielsen’s website: http://www.useit.com/ alertbox/991114.html
Nielson, J., (2000). Designing Web Usability. Indianapolis, Indiana, U.S.A.: New Riders Publishing.

OneInfoPlace. (2007). Retrieved August 12, 2007 from the OneInfoPlace web site: http://www.oneinfoplace.com/jsf.php
Oracle, 2006. Tutorial: Build a Web Application (JSF) Using JPA. Retrieved August 14, 2007 from Oracle’s website:
products/ias/toplink/jpa/tutorials/jsf-jpa-tutorial.html"

http://www.oracle.com/technology/

products/ias/toplink/jpa/tutorials/jsf-jpa-tutorial.html

Porter. J. (2003). Testing the Three-Click Rule. Retrieved August 31, 2007 from the User Interface Engineering website: http://www.uie.com/articles/three_click_rule/
Rivest R. 13. (2004) What is black box/white box testing?. Retrieved from the Internet FAQ Archives Web site: http://www.faqs.org/faqs/software-eng/testing-faq/section-13.html
Rosenfield, L & Morville, P. (2002). Information Architecture for the World Wide Web (2nd ed.). New York, NY, USA: O'Reilly.

Scott. W. Ambler (2006). UML2 Use Case Diagrams. Retrieved August 28, 2007 from: http://www.agilemodeling.com/artifacts/useCaseDiagram.htm
Siggelkow, B. (2005). Jakarta Struts Cookbook. California,USA: O’Reilly Media.

STRUTS07: The Apache Struts web page: http://struts.apache.org/
Studio Creator. Sun’s Studio Creator IDE: http://developers.sun.com/jscreator/
Sun, 2007a. WHAT IS A SERVLET? Retrieved March 13, 2006 from the Sun’s

Developer Network: http://java.sun.com/j2ee/tutorial/1_3-fcs/doc/Servlets2.html
TopLink, 2007. TopLink’s website: http://www.oracle.com/technology/products/ ias/toplink/jpa/index.html
UMLSpec. (2007). Retrieved August 25, 2007 from the Object Managements Group website: http://www.omg.org/cgi-bin/doc?formal/07-02-03
UsabilityByDesign (2004). Resources-Glossary. Retrieved August 30, 2007 from the Usability By Design website: http://www.usability.uk.com/glossary/3-click-rule.htm
UsabilityGov. (2006). Research-Based Web Design & Usability Guidelines. Retrieved August 25, 2007 from the US Department of Health and Human Services website: http://www.usability.gov/pdfs/guidelines_book.pdf
Varhol P. (2002). Applying the MVC Design Pattern Using Struts. Retrieved August 12. 2007 from: http://www.ftponline.com/javapro/ 2002_05/ magazine/ columns/weblication/default.aspx
Webopedia. (2001) White Box Testing. Retrieved August 28, 2007 from

Webopedia: http://www.webopedia.com/TERM/W/White_Box_Testing.html
Websphere Studio App. Developer : http://www-306.ibm.com/software/info1/websphere/index.jsp?tab=products/studio
Wikipedia. (2007a). Object-Oriented Analysis and Design. Retrieved August 26, 2007 from: http://en.wikipedia.org/wiki/OOAD
Wikipedia. (2007b).Netbeans. Retrieved August 26, 2007 from: http://en.wikipedia.org/wiki/NetBeans
Wikipedia. (2007c). Comparison of relational database management systems. Retrieved August 26, 2007 from: http://en.wikipedia.org/wiki/ Comparison_of_relational_database_management_systems
	

PAGE
1

_1251199475.doc
Acknowledgements

First of all, I would like to thank my supervisor Dr. Jim Briggs senior lecturer in the University of Portsmouth for proposing me this idea and for all his support and advices, he provided me during the whole academic year 2007.

Next, I would like to say a big thank you to my family for providing me with courage throughout the duration of this project and last a special thanks to Google and Yahoo! Without them, I would not be able to write this report.

